Cargando…

A Novel In Situ Self-Assembling Fabrication Method for Bacterial Cellulose-Electrospun Nanofiber Hybrid Structures

Self-assembling fabrication methodology has recently attracted attention for the production of bio-degradable polymer nanocomposites. In this research work, bacterial cellulose/electrospun nanofiber hybrid mats (BC/CA-ENM) were formed by incorporating cellulose acetate electrospun nanofiber membrane...

Descripción completa

Detalles Bibliográficos
Autores principales: Naeem, Muhammad Awais, Lv, Pengfei, Zhou, Huimin, Naveed, Tayyab, Wei, Qufu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404102/
https://www.ncbi.nlm.nih.gov/pubmed/30960637
http://dx.doi.org/10.3390/polym10070712
Descripción
Sumario:Self-assembling fabrication methodology has recently attracted attention for the production of bio-degradable polymer nanocomposites. In this research work, bacterial cellulose/electrospun nanofiber hybrid mats (BC/CA-ENM) were formed by incorporating cellulose acetate electrospun nanofiber membranes (CA-ENMs) in the fermentation media, followed by in situ self-assembly of bacterial cellulose (BC) nanofibers. ENMs exhibit excessive hydrophobicity, attributed to their high crystallinity and reorientation of hydrophobic groups at the air/solid interfaces. We aimed to improve the hydrophilic and other functional properties of ENMs. As-prepared nanohybrid structures were characterized using SEM and FTIR. SEM results revealed that in situ self-assembling of BC nanofibers onto the electrospun membrane’s surface and penetration into pores gradually increased with extended fermentation periods. The surface hydrophilicity and water absorption capacity of as-prepared hybrid mats was also tested and analyzed. Hybrid mats were observably more hydrophilic than an electrospun membrane and more hydrophobic compared to BC films. In addition, the incorporation of CA electrospun membranes in the culture media as a foundation for BC nanofiber growth resulted in improved tensile strength of the hybrid nanocomposites compared to ENMs. Overall, the results indicated the successful fabrication of nanocomposites through a novel approach, with samples demonstrating improved functional properties.