Cargando…

Effects of Sulfuric Acid on the Curing Behavior and Bonding Performance of Tannin–Sucrose Adhesive

The development of biomaterials-based adhesives is one of the main research directions for the wood-based material industry. In previous research, tannin and sucrose were used as adhesive to manufacture particleboard. However, the reaction conditions need to be optimized. In this study, sulfuric aci...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Zhongyuan, Miao, Yanfeng, Yang, Ziqian, Wang, Hua, Sang, Ruijuan, Fu, Yanchun, Huang, Caoxing, Wu, Zhihui, Zhang, Min, Sun, Shijing, Umemura, Kenji, Yong, Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404132/
https://www.ncbi.nlm.nih.gov/pubmed/30966685
http://dx.doi.org/10.3390/polym10060651
_version_ 1783400806037323776
author Zhao, Zhongyuan
Miao, Yanfeng
Yang, Ziqian
Wang, Hua
Sang, Ruijuan
Fu, Yanchun
Huang, Caoxing
Wu, Zhihui
Zhang, Min
Sun, Shijing
Umemura, Kenji
Yong, Qiang
author_facet Zhao, Zhongyuan
Miao, Yanfeng
Yang, Ziqian
Wang, Hua
Sang, Ruijuan
Fu, Yanchun
Huang, Caoxing
Wu, Zhihui
Zhang, Min
Sun, Shijing
Umemura, Kenji
Yong, Qiang
author_sort Zhao, Zhongyuan
collection PubMed
description The development of biomaterials-based adhesives is one of the main research directions for the wood-based material industry. In previous research, tannin and sucrose were used as adhesive to manufacture particleboard. However, the reaction conditions need to be optimized. In this study, sulfuric acid was added to the tannin–sucrose adhesive as a catalyst to improve the curing process. Thermal analysis, insoluble mass proportion, FT-IR, and solid state (13)C NMR were used to investigate the effects of sulfuric acid on the curing behavior of tannin and sucrose. Thermal analysis showed weight loss and endotherm temperature reduced from 205 and 215 to 136 and 138 °C, respectively, by adding sulfuric acid. In case of the adhesive with pH = 1.0, the insoluble mass proportion achieved 81% at 160 °C, which was higher than the reference at 220 °C. FT-IR analysis of the uncured adhesives showed that adding sulfuric acid leads to hydrolysis of sucrose; then, glucose and fructose converted to 5-hydroxymehthylfurfural (HMF) and levulinic acid. Dimethylene ether bridges were observed by FT-IR analysis of the cured adhesives. The results of solid state (13)C NMR spectrum indicated that 5-HMF participated in the curing process and formed methylene bridges with the C8 position of the resorcinol A-rings of tannin, whereas dimethylene ether bridges were detected as a major chemical chain of the polymer. Lab particleboards were produced using 20 wt % resin content at 180 °C and 10 min press time; the tannin–sucrose adhesive modified with sulfuric acid to pH = 1.0 exhibited better performance than the unmodified tannin–sucrose adhesive; the properties of the boards fulfilled the requirement of Japanese Industrial Standard (JIS) A5908 type 15.
format Online
Article
Text
id pubmed-6404132
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-64041322019-04-02 Effects of Sulfuric Acid on the Curing Behavior and Bonding Performance of Tannin–Sucrose Adhesive Zhao, Zhongyuan Miao, Yanfeng Yang, Ziqian Wang, Hua Sang, Ruijuan Fu, Yanchun Huang, Caoxing Wu, Zhihui Zhang, Min Sun, Shijing Umemura, Kenji Yong, Qiang Polymers (Basel) Article The development of biomaterials-based adhesives is one of the main research directions for the wood-based material industry. In previous research, tannin and sucrose were used as adhesive to manufacture particleboard. However, the reaction conditions need to be optimized. In this study, sulfuric acid was added to the tannin–sucrose adhesive as a catalyst to improve the curing process. Thermal analysis, insoluble mass proportion, FT-IR, and solid state (13)C NMR were used to investigate the effects of sulfuric acid on the curing behavior of tannin and sucrose. Thermal analysis showed weight loss and endotherm temperature reduced from 205 and 215 to 136 and 138 °C, respectively, by adding sulfuric acid. In case of the adhesive with pH = 1.0, the insoluble mass proportion achieved 81% at 160 °C, which was higher than the reference at 220 °C. FT-IR analysis of the uncured adhesives showed that adding sulfuric acid leads to hydrolysis of sucrose; then, glucose and fructose converted to 5-hydroxymehthylfurfural (HMF) and levulinic acid. Dimethylene ether bridges were observed by FT-IR analysis of the cured adhesives. The results of solid state (13)C NMR spectrum indicated that 5-HMF participated in the curing process and formed methylene bridges with the C8 position of the resorcinol A-rings of tannin, whereas dimethylene ether bridges were detected as a major chemical chain of the polymer. Lab particleboards were produced using 20 wt % resin content at 180 °C and 10 min press time; the tannin–sucrose adhesive modified with sulfuric acid to pH = 1.0 exhibited better performance than the unmodified tannin–sucrose adhesive; the properties of the boards fulfilled the requirement of Japanese Industrial Standard (JIS) A5908 type 15. MDPI 2018-06-11 /pmc/articles/PMC6404132/ /pubmed/30966685 http://dx.doi.org/10.3390/polym10060651 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhao, Zhongyuan
Miao, Yanfeng
Yang, Ziqian
Wang, Hua
Sang, Ruijuan
Fu, Yanchun
Huang, Caoxing
Wu, Zhihui
Zhang, Min
Sun, Shijing
Umemura, Kenji
Yong, Qiang
Effects of Sulfuric Acid on the Curing Behavior and Bonding Performance of Tannin–Sucrose Adhesive
title Effects of Sulfuric Acid on the Curing Behavior and Bonding Performance of Tannin–Sucrose Adhesive
title_full Effects of Sulfuric Acid on the Curing Behavior and Bonding Performance of Tannin–Sucrose Adhesive
title_fullStr Effects of Sulfuric Acid on the Curing Behavior and Bonding Performance of Tannin–Sucrose Adhesive
title_full_unstemmed Effects of Sulfuric Acid on the Curing Behavior and Bonding Performance of Tannin–Sucrose Adhesive
title_short Effects of Sulfuric Acid on the Curing Behavior and Bonding Performance of Tannin–Sucrose Adhesive
title_sort effects of sulfuric acid on the curing behavior and bonding performance of tannin–sucrose adhesive
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404132/
https://www.ncbi.nlm.nih.gov/pubmed/30966685
http://dx.doi.org/10.3390/polym10060651
work_keys_str_mv AT zhaozhongyuan effectsofsulfuricacidonthecuringbehaviorandbondingperformanceoftanninsucroseadhesive
AT miaoyanfeng effectsofsulfuricacidonthecuringbehaviorandbondingperformanceoftanninsucroseadhesive
AT yangziqian effectsofsulfuricacidonthecuringbehaviorandbondingperformanceoftanninsucroseadhesive
AT wanghua effectsofsulfuricacidonthecuringbehaviorandbondingperformanceoftanninsucroseadhesive
AT sangruijuan effectsofsulfuricacidonthecuringbehaviorandbondingperformanceoftanninsucroseadhesive
AT fuyanchun effectsofsulfuricacidonthecuringbehaviorandbondingperformanceoftanninsucroseadhesive
AT huangcaoxing effectsofsulfuricacidonthecuringbehaviorandbondingperformanceoftanninsucroseadhesive
AT wuzhihui effectsofsulfuricacidonthecuringbehaviorandbondingperformanceoftanninsucroseadhesive
AT zhangmin effectsofsulfuricacidonthecuringbehaviorandbondingperformanceoftanninsucroseadhesive
AT sunshijing effectsofsulfuricacidonthecuringbehaviorandbondingperformanceoftanninsucroseadhesive
AT umemurakenji effectsofsulfuricacidonthecuringbehaviorandbondingperformanceoftanninsucroseadhesive
AT yongqiang effectsofsulfuricacidonthecuringbehaviorandbondingperformanceoftanninsucroseadhesive