Cargando…
Comparative Adhesion, Ageing Resistance, and Surface Properties of Wood Plastic Composite Treated with Low Pressure Plasma and Atmospheric Pressure Plasma Jet
Wood plastic composites (WPCs) have poor adhesion properties due to their high surface concentration in non-polar polymers. In this work, two different plasma surface treatments, low pressure plasma (LPP) and atmospheric pressure plasma jet (APPJ), are proposed to increase the surface energy and adh...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404133/ https://www.ncbi.nlm.nih.gov/pubmed/30966677 http://dx.doi.org/10.3390/polym10060643 |
Sumario: | Wood plastic composites (WPCs) have poor adhesion properties due to their high surface concentration in non-polar polymers. In this work, two different plasma surface treatments, low pressure plasma (LPP) and atmospheric pressure plasma jet (APPJ), are proposed to increase the surface energy and adhesion property of WPC made with polyethylene (PE-WPC). After optimizing the conditions for each plasma surface treatment, the surface modifications and adhesion of PE-WPC treated with LPP and APPJ were compared. The optimal surface modifications of PE-WPC were obtained by treatment with Argon (Ar): Oxygen (O(2)) LPP for 90 s, and with air APPJ by using a plasma nozzle-WPC surface distance of one centimeter and speed of platform of one meter per minute. Both plasma treatments produced similar chemical modifications and surface energies on the PE-WPC surface. The ablation was more important for Ar:O(2) LPP treatment, and the air APPJ treatment produced more extensive chemical modifications and more homogeneously removal of the wood component of the surface, rendering the polymer surface smoother. Adhesion of PE-WPC was similarly improved by treatment with both plasmas, from 56 N/m in the as-received to 92–102 N/m in the plasma treated PE-WPC joints. The influence of ageing at 24 °C and 40% relative humidity of the adhesive joints made with PE-WPC surface and treated with Ar:O(2) LPP and APPJ plasmas was studied. In the joints made with plasma-treated PE-WPC aged under open air for more than one day, the adhesion decreased. An adhesive strength near to that of the joint made with the as-received PE-WPC was obtained after six days. However, if the adhesive joint was created immediately after plasma treatment and peeled at different times, the adhesion was maintained and even increased, and the hydrophobic recovery of the plasma-treated PE-WPC surface was inhibited. |
---|