Cargando…
Histone deacetylase inhibition by Entinostat for the prevention of electrical and structural remodeling in heart failure
BACKGROUND: The development of heart failure is accompanied by complex changes in cardiac electrophysiology and functional properties of cardiomyocytes and fibroblasts. Histone deacetylase (HDAC) inhibitors hold great promise for the pharmaceutical therapy of several malignant diseases. Here, we des...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404297/ https://www.ncbi.nlm.nih.gov/pubmed/30841920 http://dx.doi.org/10.1186/s40360-019-0294-x |
_version_ | 1783400846489288704 |
---|---|
author | Freundt, Johanna K. Frommeyer, Gerrit Spieker, Tilmann Wötzel, Fabian Grotthoff, Jochen Schulze Stypmann, Jörg Hempel, Georg Schäfers, Michael Jacobs, Andreas H. Eckardt, Lars Lange, Philipp S. |
author_facet | Freundt, Johanna K. Frommeyer, Gerrit Spieker, Tilmann Wötzel, Fabian Grotthoff, Jochen Schulze Stypmann, Jörg Hempel, Georg Schäfers, Michael Jacobs, Andreas H. Eckardt, Lars Lange, Philipp S. |
author_sort | Freundt, Johanna K. |
collection | PubMed |
description | BACKGROUND: The development of heart failure is accompanied by complex changes in cardiac electrophysiology and functional properties of cardiomyocytes and fibroblasts. Histone deacetylase (HDAC) inhibitors hold great promise for the pharmaceutical therapy of several malignant diseases. Here, we describe novel effects of the class I HDAC inhibitor Entinostat on electrical and structural remodeling in an in vivo model of pacing induced heart failure. METHODS: Rabbits were implanted a pacemaker system, subjected to rapid ventricular pacing and treated with Entinostat or placebo, respectively. Following stimulation, rabbit hearts were explanted and subsequently subjected to electrophysiological studies and further immunohistological analyses of left ventricles. RESULTS: In vivo, rapid ventricular stimulation caused a significant prolongation of monophasic action potential duration compared to sham hearts (from 173 ± 26 ms to 250 ± 41 ms; cycle length 900 ms; p < 0.05) and an increased incidence of Early afterdepolarisations (+ 150%), while treatment with Entinostat in failing hearts could partially prevent this effect (from 250 ± 41 ms to 170 ± 53 ms, p < 0.05; reduction in EAD by 50%). Entinostat treatment partially restored KCNH2 and Cav1.3 gene expressions in failing hearts, and inhibited the development of cardiac fibrosis in vivo. CONCLUSION: In a rabbit model of heart failure, Entinostat diminishes heart failure related prolongation of repolarization and partially restores KCNH2 and Cav1.3 expression. In addition, Entinostat exerts antifibrotic properties both in vitro and in vivo. Thus, Entinostat might be an interesting candidate for the pharmaceutical therapy of heart failure directed against structural and electrical remodeling. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40360-019-0294-x) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6404297 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-64042972019-03-18 Histone deacetylase inhibition by Entinostat for the prevention of electrical and structural remodeling in heart failure Freundt, Johanna K. Frommeyer, Gerrit Spieker, Tilmann Wötzel, Fabian Grotthoff, Jochen Schulze Stypmann, Jörg Hempel, Georg Schäfers, Michael Jacobs, Andreas H. Eckardt, Lars Lange, Philipp S. BMC Pharmacol Toxicol Research Article BACKGROUND: The development of heart failure is accompanied by complex changes in cardiac electrophysiology and functional properties of cardiomyocytes and fibroblasts. Histone deacetylase (HDAC) inhibitors hold great promise for the pharmaceutical therapy of several malignant diseases. Here, we describe novel effects of the class I HDAC inhibitor Entinostat on electrical and structural remodeling in an in vivo model of pacing induced heart failure. METHODS: Rabbits were implanted a pacemaker system, subjected to rapid ventricular pacing and treated with Entinostat or placebo, respectively. Following stimulation, rabbit hearts were explanted and subsequently subjected to electrophysiological studies and further immunohistological analyses of left ventricles. RESULTS: In vivo, rapid ventricular stimulation caused a significant prolongation of monophasic action potential duration compared to sham hearts (from 173 ± 26 ms to 250 ± 41 ms; cycle length 900 ms; p < 0.05) and an increased incidence of Early afterdepolarisations (+ 150%), while treatment with Entinostat in failing hearts could partially prevent this effect (from 250 ± 41 ms to 170 ± 53 ms, p < 0.05; reduction in EAD by 50%). Entinostat treatment partially restored KCNH2 and Cav1.3 gene expressions in failing hearts, and inhibited the development of cardiac fibrosis in vivo. CONCLUSION: In a rabbit model of heart failure, Entinostat diminishes heart failure related prolongation of repolarization and partially restores KCNH2 and Cav1.3 expression. In addition, Entinostat exerts antifibrotic properties both in vitro and in vivo. Thus, Entinostat might be an interesting candidate for the pharmaceutical therapy of heart failure directed against structural and electrical remodeling. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40360-019-0294-x) contains supplementary material, which is available to authorized users. BioMed Central 2019-03-06 /pmc/articles/PMC6404297/ /pubmed/30841920 http://dx.doi.org/10.1186/s40360-019-0294-x Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Freundt, Johanna K. Frommeyer, Gerrit Spieker, Tilmann Wötzel, Fabian Grotthoff, Jochen Schulze Stypmann, Jörg Hempel, Georg Schäfers, Michael Jacobs, Andreas H. Eckardt, Lars Lange, Philipp S. Histone deacetylase inhibition by Entinostat for the prevention of electrical and structural remodeling in heart failure |
title | Histone deacetylase inhibition by Entinostat for the prevention of electrical and structural remodeling in heart failure |
title_full | Histone deacetylase inhibition by Entinostat for the prevention of electrical and structural remodeling in heart failure |
title_fullStr | Histone deacetylase inhibition by Entinostat for the prevention of electrical and structural remodeling in heart failure |
title_full_unstemmed | Histone deacetylase inhibition by Entinostat for the prevention of electrical and structural remodeling in heart failure |
title_short | Histone deacetylase inhibition by Entinostat for the prevention of electrical and structural remodeling in heart failure |
title_sort | histone deacetylase inhibition by entinostat for the prevention of electrical and structural remodeling in heart failure |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404297/ https://www.ncbi.nlm.nih.gov/pubmed/30841920 http://dx.doi.org/10.1186/s40360-019-0294-x |
work_keys_str_mv | AT freundtjohannak histonedeacetylaseinhibitionbyentinostatforthepreventionofelectricalandstructuralremodelinginheartfailure AT frommeyergerrit histonedeacetylaseinhibitionbyentinostatforthepreventionofelectricalandstructuralremodelinginheartfailure AT spiekertilmann histonedeacetylaseinhibitionbyentinostatforthepreventionofelectricalandstructuralremodelinginheartfailure AT wotzelfabian histonedeacetylaseinhibitionbyentinostatforthepreventionofelectricalandstructuralremodelinginheartfailure AT grotthoffjochenschulze histonedeacetylaseinhibitionbyentinostatforthepreventionofelectricalandstructuralremodelinginheartfailure AT stypmannjorg histonedeacetylaseinhibitionbyentinostatforthepreventionofelectricalandstructuralremodelinginheartfailure AT hempelgeorg histonedeacetylaseinhibitionbyentinostatforthepreventionofelectricalandstructuralremodelinginheartfailure AT schafersmichael histonedeacetylaseinhibitionbyentinostatforthepreventionofelectricalandstructuralremodelinginheartfailure AT jacobsandreash histonedeacetylaseinhibitionbyentinostatforthepreventionofelectricalandstructuralremodelinginheartfailure AT eckardtlars histonedeacetylaseinhibitionbyentinostatforthepreventionofelectricalandstructuralremodelinginheartfailure AT langephilipps histonedeacetylaseinhibitionbyentinostatforthepreventionofelectricalandstructuralremodelinginheartfailure |