Cargando…

Dysregulation of microRNA metabolism in motor neuron diseases: Novel biomarkers and potential therapeutics

In the last 15 years, several classes of small regulatory RNAs have been identified, uncovering the widespread impact of non-coding elements in the human genome on cell homeostasis and human diseases. MicroRNAs (miRNAs) are a family of small, non-coding RNAs, which exert silencing of mRNA targets in...

Descripción completa

Detalles Bibliográficos
Autores principales: De Paola, Elisa, Verdile, Veronica, Paronetto, Maria Paola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404378/
https://www.ncbi.nlm.nih.gov/pubmed/30891533
http://dx.doi.org/10.1016/j.ncrna.2018.12.001
Descripción
Sumario:In the last 15 years, several classes of small regulatory RNAs have been identified, uncovering the widespread impact of non-coding elements in the human genome on cell homeostasis and human diseases. MicroRNAs (miRNAs) are a family of small, non-coding RNAs, which exert silencing of mRNA targets in a sequence-dependent fashion. Many miRNAs are specifically expressed in the central nervous system, where they display roles in differentiation, neuronal survival, neuronal plasticity and learning. On the other hand, deregulated miRNA/mRNA expression networks are deeply involved in neurodegeneration. Recent findings suggest a role for miRNAs in the pathogenesis of motor neuron diseases. In particular, cell-specific changes in miRNA profile are involved in the motor neuron disease phenotype and might be implicated in their selective vulnerability. Exploitation of noncoding RNAs, in particular miRNAs, for therapeutic strategies is being assessed for implementing current therapies. In this regard, the neuroprotective potential of certain miRNAs could represent a promising potential tool to improve therapies for motor-neuron diseases. This review focuses on emerging roles of miRNAs in motor neuron diseases and on their impact on neuron life-span and integrity.