Cargando…
Machine Learning Outperforms ACC/AHA CVD Risk Calculator in MESA
BACKGROUND: Studies have demonstrated that the current US guidelines based on American College of Cardiology/American Heart Association (ACC/AHA) Pooled Cohort Equations Risk Calculator may underestimate risk of atherosclerotic cardiovascular disease (CVD) in certain high‐risk individuals, therefore...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404456/ https://www.ncbi.nlm.nih.gov/pubmed/30571498 http://dx.doi.org/10.1161/JAHA.118.009476 |
_version_ | 1783400893042917376 |
---|---|
author | Kakadiaris, Ioannis A. Vrigkas, Michalis Yen, Albert A. Kuznetsova, Tatiana Budoff, Matthew Naghavi, Morteza |
author_facet | Kakadiaris, Ioannis A. Vrigkas, Michalis Yen, Albert A. Kuznetsova, Tatiana Budoff, Matthew Naghavi, Morteza |
author_sort | Kakadiaris, Ioannis A. |
collection | PubMed |
description | BACKGROUND: Studies have demonstrated that the current US guidelines based on American College of Cardiology/American Heart Association (ACC/AHA) Pooled Cohort Equations Risk Calculator may underestimate risk of atherosclerotic cardiovascular disease (CVD) in certain high‐risk individuals, therefore missing opportunities for intensive therapy and preventing CVD events. Similarly, the guidelines may overestimate risk in low risk populations resulting in unnecessary statin therapy. We used Machine Learning (ML) to tackle this problem. METHODS AND RESULTS: We developed a ML Risk Calculator based on Support Vector Machines (SVMs) using a 13‐year follow up data set from MESA (the Multi‐Ethnic Study of Atherosclerosis) of 6459 participants who were atherosclerotic CVD‐free at baseline. We provided identical input to both risk calculators and compared their performance. We then used the FLEMENGHO study (the Flemish Study of Environment, Genes and Health Outcomes) to validate the model in an external cohort. ACC/AHA Risk Calculator, based on 7.5% 10‐year risk threshold, recommended statin to 46.0%. Despite this high proportion, 23.8% of the 480 “Hard CVD” events occurred in those not recommended statin, resulting in sensitivity 0.76, specificity 0.56, and AUC 0.71. In contrast, ML Risk Calculator recommended only 11.4% to take statin, and only 14.4% of “Hard CVD” events occurred in those not recommended statin, resulting in sensitivity 0.86, specificity 0.95, and AUC 0.92. Similar results were found for prediction of “All CVD” events. CONCLUSIONS: The ML Risk Calculator outperformed the ACC/AHA Risk Calculator by recommending less drug therapy, yet missing fewer events. Additional studies are underway to validate the ML model in other cohorts and to explore its ability in short‐term CVD risk prediction. |
format | Online Article Text |
id | pubmed-6404456 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64044562019-03-18 Machine Learning Outperforms ACC/AHA CVD Risk Calculator in MESA Kakadiaris, Ioannis A. Vrigkas, Michalis Yen, Albert A. Kuznetsova, Tatiana Budoff, Matthew Naghavi, Morteza J Am Heart Assoc Original Research BACKGROUND: Studies have demonstrated that the current US guidelines based on American College of Cardiology/American Heart Association (ACC/AHA) Pooled Cohort Equations Risk Calculator may underestimate risk of atherosclerotic cardiovascular disease (CVD) in certain high‐risk individuals, therefore missing opportunities for intensive therapy and preventing CVD events. Similarly, the guidelines may overestimate risk in low risk populations resulting in unnecessary statin therapy. We used Machine Learning (ML) to tackle this problem. METHODS AND RESULTS: We developed a ML Risk Calculator based on Support Vector Machines (SVMs) using a 13‐year follow up data set from MESA (the Multi‐Ethnic Study of Atherosclerosis) of 6459 participants who were atherosclerotic CVD‐free at baseline. We provided identical input to both risk calculators and compared their performance. We then used the FLEMENGHO study (the Flemish Study of Environment, Genes and Health Outcomes) to validate the model in an external cohort. ACC/AHA Risk Calculator, based on 7.5% 10‐year risk threshold, recommended statin to 46.0%. Despite this high proportion, 23.8% of the 480 “Hard CVD” events occurred in those not recommended statin, resulting in sensitivity 0.76, specificity 0.56, and AUC 0.71. In contrast, ML Risk Calculator recommended only 11.4% to take statin, and only 14.4% of “Hard CVD” events occurred in those not recommended statin, resulting in sensitivity 0.86, specificity 0.95, and AUC 0.92. Similar results were found for prediction of “All CVD” events. CONCLUSIONS: The ML Risk Calculator outperformed the ACC/AHA Risk Calculator by recommending less drug therapy, yet missing fewer events. Additional studies are underway to validate the ML model in other cohorts and to explore its ability in short‐term CVD risk prediction. John Wiley and Sons Inc. 2018-11-11 /pmc/articles/PMC6404456/ /pubmed/30571498 http://dx.doi.org/10.1161/JAHA.118.009476 Text en © 2018 The Authors and University of Houston. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Original Research Kakadiaris, Ioannis A. Vrigkas, Michalis Yen, Albert A. Kuznetsova, Tatiana Budoff, Matthew Naghavi, Morteza Machine Learning Outperforms ACC/AHA CVD Risk Calculator in MESA |
title | Machine Learning Outperforms ACC/AHA CVD Risk Calculator in MESA
|
title_full | Machine Learning Outperforms ACC/AHA CVD Risk Calculator in MESA
|
title_fullStr | Machine Learning Outperforms ACC/AHA CVD Risk Calculator in MESA
|
title_full_unstemmed | Machine Learning Outperforms ACC/AHA CVD Risk Calculator in MESA
|
title_short | Machine Learning Outperforms ACC/AHA CVD Risk Calculator in MESA
|
title_sort | machine learning outperforms acc/aha cvd risk calculator in mesa |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404456/ https://www.ncbi.nlm.nih.gov/pubmed/30571498 http://dx.doi.org/10.1161/JAHA.118.009476 |
work_keys_str_mv | AT kakadiarisioannisa machinelearningoutperformsaccahacvdriskcalculatorinmesa AT vrigkasmichalis machinelearningoutperformsaccahacvdriskcalculatorinmesa AT yenalberta machinelearningoutperformsaccahacvdriskcalculatorinmesa AT kuznetsovatatiana machinelearningoutperformsaccahacvdriskcalculatorinmesa AT budoffmatthew machinelearningoutperformsaccahacvdriskcalculatorinmesa AT naghavimorteza machinelearningoutperformsaccahacvdriskcalculatorinmesa |