Cargando…
Accelerating multiscale modelling of fluids with on-the-fly Gaussian process regression
We present a scheme for accelerating hybrid continuum-atomistic models in multiscale fluidic systems by using Gaussian process regression as a surrogate model for computationally expensive molecular dynamics simulations. Using Gaussian process regression, we are able to accurately predict atomic-sca...
Autores principales: | Stephenson, David, Kermode, James R., Lockerby, Duncan A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404643/ https://www.ncbi.nlm.nih.gov/pubmed/30930707 http://dx.doi.org/10.1007/s10404-018-2164-z |
Ejemplares similares
-
Regression with Gaussian Processes
por: Kalia, Saarik
Publicado: (2016) -
Gaussian Process Regression for Materials and Molecules
por: Deringer, Volker L., et al.
Publicado: (2021) -
The pitfalls of using Gaussian Process Regression for normative modeling
por: Xu, Bohan, et al.
Publicado: (2021) -
A generalized optimization principle for asymmetric branching in fluidic networks
por: Stephenson, David, et al.
Publicado: (2016) -
Diffusion Acceleration with Gaussian process Estimated Reconstruction (DAGER)
por: Wu, Wenchuan, et al.
Publicado: (2019)