Cargando…
Amorphous silica nanoparticles induce tumorigenesis via regulating ATP5H/SOD1-related oxidative stress, oxidative phosphorylation and EIF4G2/PABPC1-associated translational initiation
BACKGROUND: Recent studies indicate amorphous silica nanoparticles (SiNPs), one of the widely applied nanomaterials, have potential toxicity in humans and induces cell malignant transformation. However, its carcinogenic mechanisms remain poorly understood. This study’s purpose was to investigate the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404658/ https://www.ncbi.nlm.nih.gov/pubmed/30863671 http://dx.doi.org/10.7717/peerj.6455 |
_version_ | 1783400934568624128 |
---|---|
author | Xie, Dongli Zhou, Yang Luo, Xiaogang |
author_facet | Xie, Dongli Zhou, Yang Luo, Xiaogang |
author_sort | Xie, Dongli |
collection | PubMed |
description | BACKGROUND: Recent studies indicate amorphous silica nanoparticles (SiNPs), one of the widely applied nanomaterials, have potential toxicity in humans and induces cell malignant transformation. However, its carcinogenic mechanisms remain poorly understood. This study’s purpose was to investigate the underlying toxic mechanisms of amorphous SiNPs on human lung epithelial cells model by using microarray data. METHODS: Microarray dataset GSE82062 was collected from Gene Expression Omnibus database, including three repeats of Beas-2B exposed to amorphous SiNPs for 40 passages and three repeats of passage-matched control Beas-2B cells. Differentially expressed genes (DEGs) were identified using linear models for microarray data method. Protein–protein interaction (PPI) network was constructed using data from the STRING database followed by module analysis. The miRwalk2 database was used to predict the underlying target genes of differentially miRNAs. Function enrichment analysis was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool. RESULTS: A total of 323 genes were identified as DEGs, including 280 downregulated (containing 12 pre-miRNAs) and 43 upregulated genes (containing 29 pre-miRNAs). Function enrichment indicated these genes were involved in translational initiation (i.e., eukaryotic translation initiation factor 4 gamma 2 (EIF4G2), poly (A) binding protein cytoplasmic 1 (PABPC1)), response to reactive oxygen species (i.e., superoxide dismutase 1 (SOD1)) and oxidative phosphorylation (i.e., ATP5H). PABPC1 (degree = 15), ATP5H (degree = 11) and SOD1 (degree = 8)] were proved to be hub genes after PPI-module analyses. ATP5H/SOD1 and EIF4G2/PABPC1 were overlapped with the target genes of differentially expressed pre-miR-3648/572/661 and pre-miR-4521. CONCLUSIONS: Amorphous SiNPs may induce tumorigenesis via influencing ATP5H/SOD1-related oxidative stress, oxidative phosphorylation and EIF4G2/PABPC1-associated translational initiation which may be regulated by miR-3648/572/661 and miR-4521, respectively. |
format | Online Article Text |
id | pubmed-6404658 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64046582019-03-12 Amorphous silica nanoparticles induce tumorigenesis via regulating ATP5H/SOD1-related oxidative stress, oxidative phosphorylation and EIF4G2/PABPC1-associated translational initiation Xie, Dongli Zhou, Yang Luo, Xiaogang PeerJ Bioinformatics BACKGROUND: Recent studies indicate amorphous silica nanoparticles (SiNPs), one of the widely applied nanomaterials, have potential toxicity in humans and induces cell malignant transformation. However, its carcinogenic mechanisms remain poorly understood. This study’s purpose was to investigate the underlying toxic mechanisms of amorphous SiNPs on human lung epithelial cells model by using microarray data. METHODS: Microarray dataset GSE82062 was collected from Gene Expression Omnibus database, including three repeats of Beas-2B exposed to amorphous SiNPs for 40 passages and three repeats of passage-matched control Beas-2B cells. Differentially expressed genes (DEGs) were identified using linear models for microarray data method. Protein–protein interaction (PPI) network was constructed using data from the STRING database followed by module analysis. The miRwalk2 database was used to predict the underlying target genes of differentially miRNAs. Function enrichment analysis was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool. RESULTS: A total of 323 genes were identified as DEGs, including 280 downregulated (containing 12 pre-miRNAs) and 43 upregulated genes (containing 29 pre-miRNAs). Function enrichment indicated these genes were involved in translational initiation (i.e., eukaryotic translation initiation factor 4 gamma 2 (EIF4G2), poly (A) binding protein cytoplasmic 1 (PABPC1)), response to reactive oxygen species (i.e., superoxide dismutase 1 (SOD1)) and oxidative phosphorylation (i.e., ATP5H). PABPC1 (degree = 15), ATP5H (degree = 11) and SOD1 (degree = 8)] were proved to be hub genes after PPI-module analyses. ATP5H/SOD1 and EIF4G2/PABPC1 were overlapped with the target genes of differentially expressed pre-miR-3648/572/661 and pre-miR-4521. CONCLUSIONS: Amorphous SiNPs may induce tumorigenesis via influencing ATP5H/SOD1-related oxidative stress, oxidative phosphorylation and EIF4G2/PABPC1-associated translational initiation which may be regulated by miR-3648/572/661 and miR-4521, respectively. PeerJ Inc. 2019-03-04 /pmc/articles/PMC6404658/ /pubmed/30863671 http://dx.doi.org/10.7717/peerj.6455 Text en © 2019 Xie et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Bioinformatics Xie, Dongli Zhou, Yang Luo, Xiaogang Amorphous silica nanoparticles induce tumorigenesis via regulating ATP5H/SOD1-related oxidative stress, oxidative phosphorylation and EIF4G2/PABPC1-associated translational initiation |
title | Amorphous silica nanoparticles induce tumorigenesis via regulating ATP5H/SOD1-related oxidative stress, oxidative phosphorylation and EIF4G2/PABPC1-associated translational initiation |
title_full | Amorphous silica nanoparticles induce tumorigenesis via regulating ATP5H/SOD1-related oxidative stress, oxidative phosphorylation and EIF4G2/PABPC1-associated translational initiation |
title_fullStr | Amorphous silica nanoparticles induce tumorigenesis via regulating ATP5H/SOD1-related oxidative stress, oxidative phosphorylation and EIF4G2/PABPC1-associated translational initiation |
title_full_unstemmed | Amorphous silica nanoparticles induce tumorigenesis via regulating ATP5H/SOD1-related oxidative stress, oxidative phosphorylation and EIF4G2/PABPC1-associated translational initiation |
title_short | Amorphous silica nanoparticles induce tumorigenesis via regulating ATP5H/SOD1-related oxidative stress, oxidative phosphorylation and EIF4G2/PABPC1-associated translational initiation |
title_sort | amorphous silica nanoparticles induce tumorigenesis via regulating atp5h/sod1-related oxidative stress, oxidative phosphorylation and eif4g2/pabpc1-associated translational initiation |
topic | Bioinformatics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404658/ https://www.ncbi.nlm.nih.gov/pubmed/30863671 http://dx.doi.org/10.7717/peerj.6455 |
work_keys_str_mv | AT xiedongli amorphoussilicananoparticlesinducetumorigenesisviaregulatingatp5hsod1relatedoxidativestressoxidativephosphorylationandeif4g2pabpc1associatedtranslationalinitiation AT zhouyang amorphoussilicananoparticlesinducetumorigenesisviaregulatingatp5hsod1relatedoxidativestressoxidativephosphorylationandeif4g2pabpc1associatedtranslationalinitiation AT luoxiaogang amorphoussilicananoparticlesinducetumorigenesisviaregulatingatp5hsod1relatedoxidativestressoxidativephosphorylationandeif4g2pabpc1associatedtranslationalinitiation |