Cargando…
Towards a ‘smart’ cost–benefit tool: using machine learning to predict the costs of criminal justice policy interventions
BACKGROUND: The Manning Cost–Benefit Tool (MCBT) was developed to assist criminal justice policymakers, policing organisations and crime prevention practitioners to assess the benefits of different interventions for reducing crime and to select those strategies that represent the greatest economic r...
Autores principales: | Manning, Matthew, Wong, Gabriel T. W., Graham, Timothy, Ranbaduge, Thilina, Christen, Peter, Taylor, Kerry, Wortley, Richard, Makkai, Toni, Skorich, Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404784/ https://www.ncbi.nlm.nih.gov/pubmed/30931232 http://dx.doi.org/10.1186/s40163-018-0086-4 |
Ejemplares similares
-
Forecasting and Criminal Justice Policy and Practice
por: Sabol, William J., et al.
Publicado: (2022) -
A method and app for measuring the heterogeneous costs and benefits of justice processes
por: Manning, Matthew, et al.
Publicado: (2023) -
Health-Related Resource-Use Measurement Instruments for Intersectoral Costs and Benefits in the Education and Criminal Justice Sectors
por: Mayer, Susanne, et al.
Publicado: (2017) -
Corrigendum: A method and app for measuring the heterogeneous costs and benefits of justice processes
por: Manning, Matthew, et al.
Publicado: (2023) -
The Relative Importance of Education and Criminal Justice Costs and Benefits in Economic Evaluations: A Best–Worst Scaling Experiment
por: Pokhilenko, Irina, et al.
Publicado: (2020)