Cargando…
A New Computational Model of High-Order Stochastic Simulation Based on Spatial Legendre Moments
Multiple-point simulations have been introduced over the past decade to overcome the limitations of second-order stochastic simulations in dealing with geologic complexity, curvilinear patterns, and non-Gaussianity. However, a limitation is that they sometimes fail to generate results that comply wi...
Autores principales: | Yao, Lingqing, Dimitrakopoulos, Roussos, Gamache, Michel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404987/ https://www.ncbi.nlm.nih.gov/pubmed/30931019 http://dx.doi.org/10.1007/s11004-018-9744-z |
Ejemplares similares
-
Training Image Free High-Order Stochastic Simulation Based on Aggregated Kernel Statistics
por: Yao, Lingqing, et al.
Publicado: (2021) -
High-Order Spatial Simulation Using Legendre-Like Orthogonal Splines
por: Minniakhmetov, Ilnur, et al.
Publicado: (2018) -
High-Order Sequential Simulation via Statistical Learning in Reproducing Kernel Hilbert Space
por: Yao, Lingqing, et al.
Publicado: (2019) -
A New Non-stationary High-order Spatial Sequential Simulation Method
por: Haji Abolhassani, Amir Abbas, et al.
Publicado: (2022) -
Varroa Destructor Classification Using Legendre–Fourier Moments with Different Color Spaces
por: Noriega-Escamilla, Alicia, et al.
Publicado: (2023)