Cargando…

Optimal control of diffuser shapes for non-uniform flow

A simplified model is used to identify the diffuser shape that maximises pressure recovery for several classes of non-uniform inflow. We find that optimal diffuser shapes strike a balance between not widening too soon, as this accentuates the non-uniform flow, and not staying narrow for too long, wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Benham, G. P., Hewitt, I. J., Please, C. P., Bird, P. A. D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405007/
https://www.ncbi.nlm.nih.gov/pubmed/30930474
http://dx.doi.org/10.1007/s10665-018-9974-6
_version_ 1783400989879959552
author Benham, G. P.
Hewitt, I. J.
Please, C. P.
Bird, P. A. D.
author_facet Benham, G. P.
Hewitt, I. J.
Please, C. P.
Bird, P. A. D.
author_sort Benham, G. P.
collection PubMed
description A simplified model is used to identify the diffuser shape that maximises pressure recovery for several classes of non-uniform inflow. We find that optimal diffuser shapes strike a balance between not widening too soon, as this accentuates the non-uniform flow, and not staying narrow for too long, which is detrimental for wall drag. Three classes of non-uniform inflow are considered, with the axial velocity varying across the width of the diffuser entrance. The first case has inner and outer streams of different speeds, with a velocity jump between them that evolves into a shear layer downstream. The second case is a limiting case when these streams are of similar speed. The third case is a pure shear profile with linear velocity variation between the centre and outer edge of the diffuser. We describe the evolution of the time-averaged flow profile using a reduced mathematical model that has been previously tested against experiments and computational fluid dynamics models. The model consists of integrated mass and momentum equations, where wall drag is treated with a friction factor parameterisation. The governing equations of this model form the dynamics of an optimal control problem where the control is the diffuser channel shape. A numerical optimisation approach is used to solve the optimal control problem and Pontryagin’s maximum principle is used to find analytical solutions in the second and third cases. We show that some of the optimal diffuser shapes can be well approximated by piecewise linear sections. This suggests a low-dimensional parameterisation of the shapes, providing a structure in which more detailed and computationally expensive turbulence models can be used to find optimal shapes for more realistic flow behaviour.
format Online
Article
Text
id pubmed-6405007
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer Netherlands
record_format MEDLINE/PubMed
spelling pubmed-64050072019-03-27 Optimal control of diffuser shapes for non-uniform flow Benham, G. P. Hewitt, I. J. Please, C. P. Bird, P. A. D. J Eng Math Article A simplified model is used to identify the diffuser shape that maximises pressure recovery for several classes of non-uniform inflow. We find that optimal diffuser shapes strike a balance between not widening too soon, as this accentuates the non-uniform flow, and not staying narrow for too long, which is detrimental for wall drag. Three classes of non-uniform inflow are considered, with the axial velocity varying across the width of the diffuser entrance. The first case has inner and outer streams of different speeds, with a velocity jump between them that evolves into a shear layer downstream. The second case is a limiting case when these streams are of similar speed. The third case is a pure shear profile with linear velocity variation between the centre and outer edge of the diffuser. We describe the evolution of the time-averaged flow profile using a reduced mathematical model that has been previously tested against experiments and computational fluid dynamics models. The model consists of integrated mass and momentum equations, where wall drag is treated with a friction factor parameterisation. The governing equations of this model form the dynamics of an optimal control problem where the control is the diffuser channel shape. A numerical optimisation approach is used to solve the optimal control problem and Pontryagin’s maximum principle is used to find analytical solutions in the second and third cases. We show that some of the optimal diffuser shapes can be well approximated by piecewise linear sections. This suggests a low-dimensional parameterisation of the shapes, providing a structure in which more detailed and computationally expensive turbulence models can be used to find optimal shapes for more realistic flow behaviour. Springer Netherlands 2018-11-13 2018 /pmc/articles/PMC6405007/ /pubmed/30930474 http://dx.doi.org/10.1007/s10665-018-9974-6 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Benham, G. P.
Hewitt, I. J.
Please, C. P.
Bird, P. A. D.
Optimal control of diffuser shapes for non-uniform flow
title Optimal control of diffuser shapes for non-uniform flow
title_full Optimal control of diffuser shapes for non-uniform flow
title_fullStr Optimal control of diffuser shapes for non-uniform flow
title_full_unstemmed Optimal control of diffuser shapes for non-uniform flow
title_short Optimal control of diffuser shapes for non-uniform flow
title_sort optimal control of diffuser shapes for non-uniform flow
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405007/
https://www.ncbi.nlm.nih.gov/pubmed/30930474
http://dx.doi.org/10.1007/s10665-018-9974-6
work_keys_str_mv AT benhamgp optimalcontrolofdiffusershapesfornonuniformflow
AT hewittij optimalcontrolofdiffusershapesfornonuniformflow
AT pleasecp optimalcontrolofdiffusershapesfornonuniformflow
AT birdpad optimalcontrolofdiffusershapesfornonuniformflow