Cargando…
Modified shape index for object-based random forest image classification of agricultural systems using airborne hyperspectral datasets
This paper highlights the importance of optimized shape index for agricultural management system analysis that utilizes the contiguous bands of hyperspectral data to define the gradient of the spectral curve and improve image classification accuracy. Currently, a number of machine learning methods w...
Autores principales: | Salas, Eric Ariel L., Subburayalu, Sakthi Kumaran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405071/ https://www.ncbi.nlm.nih.gov/pubmed/30845216 http://dx.doi.org/10.1371/journal.pone.0213356 |
Ejemplares similares
-
Correction: Modified shape index for object-based random forest image classification of agricultural systems using airborne hyperspectral datasets
por: Salas, Eric Ariel L., et al.
Publicado: (2019) -
Assessing the effectiveness of ground truth data to capture landscape variability from an agricultural region using Gaussian simulation and geostatistical techniques
por: Salas, Eric Ariel L., et al.
Publicado: (2021) -
In-situ and airborne hyperspectral data for detecting agricultural activities in a dense forest landscape
por: Rajesh, C.B., et al.
Publicado: (2023) -
Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network
por: Chang, Zhanyuan, et al.
Publicado: (2020) -
Biodiversity Mapping in a Tropical West African Forest with Airborne Hyperspectral Data
por: Vaglio Laurin, Gaia, et al.
Publicado: (2014)