Cargando…
Scaling limit of the odometer in divisible sandpiles
In a recent work Levine et al. (Ann Henri Poincaré 17:1677–1711, 2016. 10.1007/s00023-015-0433-x) prove that the odometer function of a divisible sandpile model on a finite graph can be expressed as a shifted discrete bilaplacian Gaussian field. For the discrete torus, they suggest the possibility t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405076/ https://www.ncbi.nlm.nih.gov/pubmed/30930516 http://dx.doi.org/10.1007/s00440-017-0821-x |
_version_ | 1783401005933658112 |
---|---|
author | Cipriani, Alessandra Hazra, Rajat Subhra Ruszel, Wioletta M. |
author_facet | Cipriani, Alessandra Hazra, Rajat Subhra Ruszel, Wioletta M. |
author_sort | Cipriani, Alessandra |
collection | PubMed |
description | In a recent work Levine et al. (Ann Henri Poincaré 17:1677–1711, 2016. 10.1007/s00023-015-0433-x) prove that the odometer function of a divisible sandpile model on a finite graph can be expressed as a shifted discrete bilaplacian Gaussian field. For the discrete torus, they suggest the possibility that the scaling limit of the odometer may be related to the continuum bilaplacian field. In this work we show that in any dimension the rescaled odometer converges to the continuum bilaplacian field on the unit torus. |
format | Online Article Text |
id | pubmed-6405076 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-64050762019-03-27 Scaling limit of the odometer in divisible sandpiles Cipriani, Alessandra Hazra, Rajat Subhra Ruszel, Wioletta M. Probab Theory Relat Fields Article In a recent work Levine et al. (Ann Henri Poincaré 17:1677–1711, 2016. 10.1007/s00023-015-0433-x) prove that the odometer function of a divisible sandpile model on a finite graph can be expressed as a shifted discrete bilaplacian Gaussian field. For the discrete torus, they suggest the possibility that the scaling limit of the odometer may be related to the continuum bilaplacian field. In this work we show that in any dimension the rescaled odometer converges to the continuum bilaplacian field on the unit torus. Springer Berlin Heidelberg 2017-12-08 2018 /pmc/articles/PMC6405076/ /pubmed/30930516 http://dx.doi.org/10.1007/s00440-017-0821-x Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Cipriani, Alessandra Hazra, Rajat Subhra Ruszel, Wioletta M. Scaling limit of the odometer in divisible sandpiles |
title | Scaling limit of the odometer in divisible sandpiles |
title_full | Scaling limit of the odometer in divisible sandpiles |
title_fullStr | Scaling limit of the odometer in divisible sandpiles |
title_full_unstemmed | Scaling limit of the odometer in divisible sandpiles |
title_short | Scaling limit of the odometer in divisible sandpiles |
title_sort | scaling limit of the odometer in divisible sandpiles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405076/ https://www.ncbi.nlm.nih.gov/pubmed/30930516 http://dx.doi.org/10.1007/s00440-017-0821-x |
work_keys_str_mv | AT ciprianialessandra scalinglimitoftheodometerindivisiblesandpiles AT hazrarajatsubhra scalinglimitoftheodometerindivisiblesandpiles AT ruszelwiolettam scalinglimitoftheodometerindivisiblesandpiles |