Cargando…
The Bohl Spectrum for Linear Nonautonomous Differential Equations
We develop the Bohl spectrum for nonautonomous linear differential equations on a half line, which is a spectral concept that lies between the Lyapunov and the Sacker–Sell spectra. We prove that the Bohl spectrum is given by the union of finitely many intervals, and we show by means of an explicit e...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405178/ https://www.ncbi.nlm.nih.gov/pubmed/30930596 http://dx.doi.org/10.1007/s10884-016-9530-x |
Sumario: | We develop the Bohl spectrum for nonautonomous linear differential equations on a half line, which is a spectral concept that lies between the Lyapunov and the Sacker–Sell spectra. We prove that the Bohl spectrum is given by the union of finitely many intervals, and we show by means of an explicit example that the Bohl spectrum does not coincide with the Sacker–Sell spectrum in general even for bounded systems. We demonstrate for this example that any higher-order nonlinear perturbation is exponentially stable (which is not evident from the Sacker–Sell spectrum), but we show that in general this is not true. We also analyze in detail situations in which the Bohl spectrum is identical to the Sacker–Sell spectrum. |
---|