Cargando…
Impact of nominal photon energies on normal tissue sparing in knowledge-based radiotherapy treatment planning for rectal cancer patients
The interactive adjustment of the optimization objectives during the treatment planning process has made it difficult to evaluate the impact of beam quality exclusively in radiotherapy. Without consensus in the published results, the arbitrary selection of photon energies increased the probability o...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405245/ https://www.ncbi.nlm.nih.gov/pubmed/30845263 http://dx.doi.org/10.1371/journal.pone.0213271 |
Sumario: | The interactive adjustment of the optimization objectives during the treatment planning process has made it difficult to evaluate the impact of beam quality exclusively in radiotherapy. Without consensus in the published results, the arbitrary selection of photon energies increased the probability of suboptimal plans. This work aims to evaluate the dosimetric impact of various photon energies on the sparing of normal tissues by applying a preconfigured knowledge-based planning (RapidPlan) model to various clinically available photon energies for rectal cancer patients, based on model-generated optimization objectives, which provide a comparison basis with less human interference. A RapidPlan model based on 81 historical VMAT plans for pre-surgical rectal cancer patients using 10MV flattened beam (10X) was used to generate patient-specific objectives for the automated optimization of other 20 patients using 6X, 8X, 10X (reference), 6MV flattening-filter-free (6F) and 10F beams respectively on a TrueBeam accelerator. It was observed that flattened beams produced very comparable target dose coverage yet the conformity index using 6F and 10F were clinically unacceptable (>1.29). Therefore, dose to organs-at-risk (OARs) and normal tissues were only evaluated for flattened beams. RapidPlan-generated objectives for 6X and 8X beams can achieve comparable target dose coverage as that of 10X, yet the dose to normal tissues increased monotonically with decreased energies. Differences were statistically significant except femoral heads. From the radiological perspective of view, higher beam energy is still preferable for deep seated tumors, even if multiple field entries such as VMAT technique can accumulate enough dose to the target using lower energies, as reported in the literature. In conclusion, RapidPlan model configured for flattened beams cannot optimize un-flattened beams before adjusting the target objectives, yet works for flattened beams of other energies. For the investigated 10X, 8X and 6X photons, higher energies provide better normal tissue sparing. |
---|