Cargando…
Effects of photoperiod on life‐history and thermal stress resistance traits across populations of Drosophila subobscura
INTRODUCTION: Organisms use environmental cues to match their phenotype with the future availability of resources and environmental conditions. Changes in the magnitude and frequency of environmental cues such as photoperiod and temperature along latitudes can be used by organisms to predict seasona...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405525/ https://www.ncbi.nlm.nih.gov/pubmed/30891213 http://dx.doi.org/10.1002/ece3.4945 |
_version_ | 1783401087836880896 |
---|---|
author | Moghadam, Neda N. Kurbalija Novicic, Zorana Pertoldi, Cino Kristensen, Torsten N. Bahrndorff, Simon |
author_facet | Moghadam, Neda N. Kurbalija Novicic, Zorana Pertoldi, Cino Kristensen, Torsten N. Bahrndorff, Simon |
author_sort | Moghadam, Neda N. |
collection | PubMed |
description | INTRODUCTION: Organisms use environmental cues to match their phenotype with the future availability of resources and environmental conditions. Changes in the magnitude and frequency of environmental cues such as photoperiod and temperature along latitudes can be used by organisms to predict seasonal changes. While the role of temperature variation on the induction of plastic and seasonal responses is well established, the importance of photoperiod for predicting seasonal changes is less explored. MATERIALS AND METHODS: Here we studied changes in life‐history and thermal stress resistance traits in Drosophila subobscura in response to variation in photoperiod (6:18, 12:12 and 18:6 light:dark cycles) mimicking seasonal variations in day length. The populations of D. subobscura were collected from five locations along a latitudinal gradient (from North Africa and Europe). These populations were exposed to different photoperiods for two generations, whereafter egg‐to‐adult viability, productivity, dry body weight, thermal tolerance, and starvation resistance were assessed. RESULTS: We found strong effects of photoperiod, origin of populations, and their interactions on life‐history and stress resistance traits. Thermal resistance varied between the populations and the effect of photoperiod depended on the trait and the method applied for the assessment of thermal resistance. PERSPECTIVES: Our results show a strong effect of the origin of population and photoperiod on a range of fitness‐related traits and provide evidence for local adaptation to environmental cues (photoperiod by population interaction). The findings emphasize an important and often neglected role of photoperiod in studies on thermal resistance and suggest that cues induced by photoperiod may provide some buffer enabling populations to cope with a more variable and unpredictable future climate. |
format | Online Article Text |
id | pubmed-6405525 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64055252019-03-19 Effects of photoperiod on life‐history and thermal stress resistance traits across populations of Drosophila subobscura Moghadam, Neda N. Kurbalija Novicic, Zorana Pertoldi, Cino Kristensen, Torsten N. Bahrndorff, Simon Ecol Evol Original Research INTRODUCTION: Organisms use environmental cues to match their phenotype with the future availability of resources and environmental conditions. Changes in the magnitude and frequency of environmental cues such as photoperiod and temperature along latitudes can be used by organisms to predict seasonal changes. While the role of temperature variation on the induction of plastic and seasonal responses is well established, the importance of photoperiod for predicting seasonal changes is less explored. MATERIALS AND METHODS: Here we studied changes in life‐history and thermal stress resistance traits in Drosophila subobscura in response to variation in photoperiod (6:18, 12:12 and 18:6 light:dark cycles) mimicking seasonal variations in day length. The populations of D. subobscura were collected from five locations along a latitudinal gradient (from North Africa and Europe). These populations were exposed to different photoperiods for two generations, whereafter egg‐to‐adult viability, productivity, dry body weight, thermal tolerance, and starvation resistance were assessed. RESULTS: We found strong effects of photoperiod, origin of populations, and their interactions on life‐history and stress resistance traits. Thermal resistance varied between the populations and the effect of photoperiod depended on the trait and the method applied for the assessment of thermal resistance. PERSPECTIVES: Our results show a strong effect of the origin of population and photoperiod on a range of fitness‐related traits and provide evidence for local adaptation to environmental cues (photoperiod by population interaction). The findings emphasize an important and often neglected role of photoperiod in studies on thermal resistance and suggest that cues induced by photoperiod may provide some buffer enabling populations to cope with a more variable and unpredictable future climate. John Wiley and Sons Inc. 2019-01-30 /pmc/articles/PMC6405525/ /pubmed/30891213 http://dx.doi.org/10.1002/ece3.4945 Text en © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Moghadam, Neda N. Kurbalija Novicic, Zorana Pertoldi, Cino Kristensen, Torsten N. Bahrndorff, Simon Effects of photoperiod on life‐history and thermal stress resistance traits across populations of Drosophila subobscura |
title | Effects of photoperiod on life‐history and thermal stress resistance traits across populations of Drosophila subobscura
|
title_full | Effects of photoperiod on life‐history and thermal stress resistance traits across populations of Drosophila subobscura
|
title_fullStr | Effects of photoperiod on life‐history and thermal stress resistance traits across populations of Drosophila subobscura
|
title_full_unstemmed | Effects of photoperiod on life‐history and thermal stress resistance traits across populations of Drosophila subobscura
|
title_short | Effects of photoperiod on life‐history and thermal stress resistance traits across populations of Drosophila subobscura
|
title_sort | effects of photoperiod on life‐history and thermal stress resistance traits across populations of drosophila subobscura |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405525/ https://www.ncbi.nlm.nih.gov/pubmed/30891213 http://dx.doi.org/10.1002/ece3.4945 |
work_keys_str_mv | AT moghadamnedan effectsofphotoperiodonlifehistoryandthermalstressresistancetraitsacrosspopulationsofdrosophilasubobscura AT kurbalijanoviciczorana effectsofphotoperiodonlifehistoryandthermalstressresistancetraitsacrosspopulationsofdrosophilasubobscura AT pertoldicino effectsofphotoperiodonlifehistoryandthermalstressresistancetraitsacrosspopulationsofdrosophilasubobscura AT kristensentorstenn effectsofphotoperiodonlifehistoryandthermalstressresistancetraitsacrosspopulationsofdrosophilasubobscura AT bahrndorffsimon effectsofphotoperiodonlifehistoryandthermalstressresistancetraitsacrosspopulationsofdrosophilasubobscura |