Cargando…
Repeat disturbances have cumulative impacts on stream communities
1. Climate change has altered disturbance regimes in many ecosystems, and predictions show that these trends are likely to continue. The frequency of disturbance events plays a particularly important role in communities by selecting for disturbance‐tolerant taxa. 2. However, ecologists have yet to d...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405533/ https://www.ncbi.nlm.nih.gov/pubmed/30891224 http://dx.doi.org/10.1002/ece3.4968 |
_version_ | 1783401090313617408 |
---|---|
author | Haghkerdar, Jessica M. McLachlan, Jack R. Ireland, Alexis Greig, Hamish S. |
author_facet | Haghkerdar, Jessica M. McLachlan, Jack R. Ireland, Alexis Greig, Hamish S. |
author_sort | Haghkerdar, Jessica M. |
collection | PubMed |
description | 1. Climate change has altered disturbance regimes in many ecosystems, and predictions show that these trends are likely to continue. The frequency of disturbance events plays a particularly important role in communities by selecting for disturbance‐tolerant taxa. 2. However, ecologists have yet to disentangle the influence of disturbance frequency per se and time since last disturbance, because more frequently disturbed systems have also usually been disturbed more recently. Our understanding of the effects of repeated disturbances is therefore confounded by differences in successional processes. 3. We used in‐situ stream mesocosms to isolate and examine the effect of disturbance frequency on community composition. We applied substrate moving disturbances at five frequencies, with the last disturbance occurring on the same day across all treatments. Communities were then sampled after a recovery period of 9 days. 4. Macroinvertebrate community composition reflected the gradient of disturbance frequency driven by differential vulnerability of taxa to disturbance. Diversity metrics, including family‐level richness, decreased, reflecting a likely loss of functional diversity with increasing disturbance frequency. In contrast, overall abundance was unaffected by disturbance frequency as rapid recovery of the dominant taxon compensated for strong negative responses of disturbance‐vulnerable taxa. 5. We show that cumulative effects of repeated disturbances—not just the time communities have had to recover before sampling—alter communities, especially by disproportionately affecting rare taxa. Thus, the timing of past disturbances can have knock‐on effects that determine how a system will respond to further change. |
format | Online Article Text |
id | pubmed-6405533 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64055332019-03-19 Repeat disturbances have cumulative impacts on stream communities Haghkerdar, Jessica M. McLachlan, Jack R. Ireland, Alexis Greig, Hamish S. Ecol Evol Original Research 1. Climate change has altered disturbance regimes in many ecosystems, and predictions show that these trends are likely to continue. The frequency of disturbance events plays a particularly important role in communities by selecting for disturbance‐tolerant taxa. 2. However, ecologists have yet to disentangle the influence of disturbance frequency per se and time since last disturbance, because more frequently disturbed systems have also usually been disturbed more recently. Our understanding of the effects of repeated disturbances is therefore confounded by differences in successional processes. 3. We used in‐situ stream mesocosms to isolate and examine the effect of disturbance frequency on community composition. We applied substrate moving disturbances at five frequencies, with the last disturbance occurring on the same day across all treatments. Communities were then sampled after a recovery period of 9 days. 4. Macroinvertebrate community composition reflected the gradient of disturbance frequency driven by differential vulnerability of taxa to disturbance. Diversity metrics, including family‐level richness, decreased, reflecting a likely loss of functional diversity with increasing disturbance frequency. In contrast, overall abundance was unaffected by disturbance frequency as rapid recovery of the dominant taxon compensated for strong negative responses of disturbance‐vulnerable taxa. 5. We show that cumulative effects of repeated disturbances—not just the time communities have had to recover before sampling—alter communities, especially by disproportionately affecting rare taxa. Thus, the timing of past disturbances can have knock‐on effects that determine how a system will respond to further change. John Wiley and Sons Inc. 2019-02-14 /pmc/articles/PMC6405533/ /pubmed/30891224 http://dx.doi.org/10.1002/ece3.4968 Text en © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Haghkerdar, Jessica M. McLachlan, Jack R. Ireland, Alexis Greig, Hamish S. Repeat disturbances have cumulative impacts on stream communities |
title | Repeat disturbances have cumulative impacts on stream communities |
title_full | Repeat disturbances have cumulative impacts on stream communities |
title_fullStr | Repeat disturbances have cumulative impacts on stream communities |
title_full_unstemmed | Repeat disturbances have cumulative impacts on stream communities |
title_short | Repeat disturbances have cumulative impacts on stream communities |
title_sort | repeat disturbances have cumulative impacts on stream communities |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405533/ https://www.ncbi.nlm.nih.gov/pubmed/30891224 http://dx.doi.org/10.1002/ece3.4968 |
work_keys_str_mv | AT haghkerdarjessicam repeatdisturbanceshavecumulativeimpactsonstreamcommunities AT mclachlanjackr repeatdisturbanceshavecumulativeimpactsonstreamcommunities AT irelandalexis repeatdisturbanceshavecumulativeimpactsonstreamcommunities AT greighamishs repeatdisturbanceshavecumulativeimpactsonstreamcommunities |