Cargando…
A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films
We propose using faster regions with convolutional neural network features (faster R-CNN) in the TensorFlow tool package to detect and number teeth in dental periapical films. To improve detection precisions, we propose three post-processing techniques to supplement the baseline faster R-CNN accordi...
Autores principales: | Chen, Hu, Zhang, Kailai, Lyu, Peijun, Li, Hong, Zhang, Ludan, Wu, Ji, Lee, Chin-Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405755/ https://www.ncbi.nlm.nih.gov/pubmed/30846758 http://dx.doi.org/10.1038/s41598-019-40414-y |
Ejemplares similares
-
Automatic Feature Segmentation in Dental Periapical Radiographs
por: Ari, Tugba, et al.
Publicado: (2022) -
Automatic detection of teeth and dental treatment patterns on dental panoramic radiographs using deep neural networks
por: Choi, Hye-Ran, et al.
Publicado: (2022) -
Deep learning based dental implant failure prediction from periapical and panoramic films
por: Zhang, Chunan, et al.
Publicado: (2023) -
Development of a Deep Learning Algorithm for Periapical Disease Detection in Dental Radiographs
por: Endres, Michael G., et al.
Publicado: (2020) -
Deep Learning for Dental Diagnosis: A Novel Approach to Furcation Involvement Detection on Periapical Radiographs
por: Mao, Yi-Cheng, et al.
Publicado: (2023)