Cargando…
Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells
Further minimizing the defect state density in the semiconducting absorber is vital to boost the power conversion efficiency of solar cells approaching Shockley-Queisser limit. However, it lacks a general strategy to control the precursor chemistry for defects density reduction in the family of iodi...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405758/ https://www.ncbi.nlm.nih.gov/pubmed/30846692 http://dx.doi.org/10.1038/s41467-019-09093-1 |
_version_ | 1783401157495881728 |
---|---|
author | Chen, Yihua Li, Nengxu Wang, Ligang Li, Liang Xu, Ziqi Jiao, Haoyang Liu, Pengfei Zhu, Cheng Zai, Huachao Sun, Mingzi Zou, Wei Zhang, Shuai Xing, Guichuan Liu, Xinfeng Wang, Jianpu Li, Dongdong Huang, Bolong Chen, Qi Zhou, Huanping |
author_facet | Chen, Yihua Li, Nengxu Wang, Ligang Li, Liang Xu, Ziqi Jiao, Haoyang Liu, Pengfei Zhu, Cheng Zai, Huachao Sun, Mingzi Zou, Wei Zhang, Shuai Xing, Guichuan Liu, Xinfeng Wang, Jianpu Li, Dongdong Huang, Bolong Chen, Qi Zhou, Huanping |
author_sort | Chen, Yihua |
collection | PubMed |
description | Further minimizing the defect state density in the semiconducting absorber is vital to boost the power conversion efficiency of solar cells approaching Shockley-Queisser limit. However, it lacks a general strategy to control the precursor chemistry for defects density reduction in the family of iodine based perovskite. Here the alkaline environment in precursor solution is carefully investigated as an effective parameter to suppress the incident iodine and affects the crystallization kinetics during film fabrication, via rationale adjustment of the alkalinity of additives. Especially, a ‘residual free’ weak alkaline is proposed not only to shrink the bandgap of the absorber by modulating the stoichiometry of organic cation, but also to improve the open circuit voltage in the resultant device. Consequently, the certified efficiency of 20.87% (Newport) is achieved with one of the smallest voltage deficits of 413 mV in the planar heterojunction perovskite solar cell. |
format | Online Article Text |
id | pubmed-6405758 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-64057582019-03-11 Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells Chen, Yihua Li, Nengxu Wang, Ligang Li, Liang Xu, Ziqi Jiao, Haoyang Liu, Pengfei Zhu, Cheng Zai, Huachao Sun, Mingzi Zou, Wei Zhang, Shuai Xing, Guichuan Liu, Xinfeng Wang, Jianpu Li, Dongdong Huang, Bolong Chen, Qi Zhou, Huanping Nat Commun Article Further minimizing the defect state density in the semiconducting absorber is vital to boost the power conversion efficiency of solar cells approaching Shockley-Queisser limit. However, it lacks a general strategy to control the precursor chemistry for defects density reduction in the family of iodine based perovskite. Here the alkaline environment in precursor solution is carefully investigated as an effective parameter to suppress the incident iodine and affects the crystallization kinetics during film fabrication, via rationale adjustment of the alkalinity of additives. Especially, a ‘residual free’ weak alkaline is proposed not only to shrink the bandgap of the absorber by modulating the stoichiometry of organic cation, but also to improve the open circuit voltage in the resultant device. Consequently, the certified efficiency of 20.87% (Newport) is achieved with one of the smallest voltage deficits of 413 mV in the planar heterojunction perovskite solar cell. Nature Publishing Group UK 2019-03-07 /pmc/articles/PMC6405758/ /pubmed/30846692 http://dx.doi.org/10.1038/s41467-019-09093-1 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Chen, Yihua Li, Nengxu Wang, Ligang Li, Liang Xu, Ziqi Jiao, Haoyang Liu, Pengfei Zhu, Cheng Zai, Huachao Sun, Mingzi Zou, Wei Zhang, Shuai Xing, Guichuan Liu, Xinfeng Wang, Jianpu Li, Dongdong Huang, Bolong Chen, Qi Zhou, Huanping Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells |
title | Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells |
title_full | Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells |
title_fullStr | Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells |
title_full_unstemmed | Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells |
title_short | Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells |
title_sort | impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405758/ https://www.ncbi.nlm.nih.gov/pubmed/30846692 http://dx.doi.org/10.1038/s41467-019-09093-1 |
work_keys_str_mv | AT chenyihua impactsofalkalineonthedefectspropertyandcrystallizationkineticsinperovskitesolarcells AT linengxu impactsofalkalineonthedefectspropertyandcrystallizationkineticsinperovskitesolarcells AT wangligang impactsofalkalineonthedefectspropertyandcrystallizationkineticsinperovskitesolarcells AT liliang impactsofalkalineonthedefectspropertyandcrystallizationkineticsinperovskitesolarcells AT xuziqi impactsofalkalineonthedefectspropertyandcrystallizationkineticsinperovskitesolarcells AT jiaohaoyang impactsofalkalineonthedefectspropertyandcrystallizationkineticsinperovskitesolarcells AT liupengfei impactsofalkalineonthedefectspropertyandcrystallizationkineticsinperovskitesolarcells AT zhucheng impactsofalkalineonthedefectspropertyandcrystallizationkineticsinperovskitesolarcells AT zaihuachao impactsofalkalineonthedefectspropertyandcrystallizationkineticsinperovskitesolarcells AT sunmingzi impactsofalkalineonthedefectspropertyandcrystallizationkineticsinperovskitesolarcells AT zouwei impactsofalkalineonthedefectspropertyandcrystallizationkineticsinperovskitesolarcells AT zhangshuai impactsofalkalineonthedefectspropertyandcrystallizationkineticsinperovskitesolarcells AT xingguichuan impactsofalkalineonthedefectspropertyandcrystallizationkineticsinperovskitesolarcells AT liuxinfeng impactsofalkalineonthedefectspropertyandcrystallizationkineticsinperovskitesolarcells AT wangjianpu impactsofalkalineonthedefectspropertyandcrystallizationkineticsinperovskitesolarcells AT lidongdong impactsofalkalineonthedefectspropertyandcrystallizationkineticsinperovskitesolarcells AT huangbolong impactsofalkalineonthedefectspropertyandcrystallizationkineticsinperovskitesolarcells AT chenqi impactsofalkalineonthedefectspropertyandcrystallizationkineticsinperovskitesolarcells AT zhouhuanping impactsofalkalineonthedefectspropertyandcrystallizationkineticsinperovskitesolarcells |