Cargando…

Deep-tissue optical imaging of near cellular-sized features

Detection of biological features at the cellular level with sufficient sensitivity in complex tissue remains a major challenge. To appreciate this challenge, this would require finding tens to hundreds of cells (a 0.1 mm tumor has ~125 cells), out of ~37 trillion cells in the human body. Near-infrar...

Descripción completa

Detalles Bibliográficos
Autores principales: Dang, Xiangnan, Bardhan, Neelkanth M., Qi, Jifa, Gu, Li, Eze, Ngozi A., Lin, Ching-Wei, Kataria, Swati, Hammond, Paula T., Belcher, Angela M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405836/
https://www.ncbi.nlm.nih.gov/pubmed/30846704
http://dx.doi.org/10.1038/s41598-019-39502-w
Descripción
Sumario:Detection of biological features at the cellular level with sufficient sensitivity in complex tissue remains a major challenge. To appreciate this challenge, this would require finding tens to hundreds of cells (a 0.1 mm tumor has ~125 cells), out of ~37 trillion cells in the human body. Near-infrared optical imaging holds promise for high-resolution, deep-tissue imaging, but is limited by autofluorescence and scattering. To date, the maximum reported depth using second-window near-infrared (NIR-II: 1000–1700 nm) fluorophores is 3.2 cm through tissue. Here, we design an NIR-II imaging system, “Detection of Optically Luminescent Probes using Hyperspectral and diffuse Imaging in Near-infrared” (DOLPHIN), that resolves these challenges. DOLPHIN achieves the following: (i) resolution of probes through up to 8 cm of tissue phantom; (ii) identification of spectral and scattering signatures of tissues without a priori knowledge of background or autofluorescence; and (iii) 3D reconstruction of live whole animals. Notably, we demonstrate noninvasive real-time tracking of a 0.1 mm-sized fluorophore through the gastrointestinal tract of a living mouse, which is beyond the detection limit of current imaging modalities.