Cargando…
Characterisation of nonlinear receptive fields of visual neurons by convolutional neural network
A comprehensive understanding of the stimulus-response properties of individual neurons is necessary to crack the neural code of sensory cortices. However, a barrier to achieving this goal is the difficulty of analysing the nonlinearity of neuronal responses. Here, by incorporating convolutional neu...
Autores principales: | Ukita, Jumpei, Yoshida, Takashi, Ohki, Kenichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405885/ https://www.ncbi.nlm.nih.gov/pubmed/30846783 http://dx.doi.org/10.1038/s41598-019-40535-4 |
Ejemplares similares
-
Estimating and interpreting nonlinear receptive field of sensory neural responses with deep neural network models
por: Keshishian, Menoua, et al.
Publicado: (2020) -
Nonlinear system identification of receptive fields from spiking neuron data
por: Florescu, Dorian, et al.
Publicado: (2015) -
Natural images are reliably represented by sparse and variable populations of neurons in visual cortex
por: Yoshida, Takashi, et al.
Publicado: (2020) -
The spatial structure of a nonlinear receptive field
por: Schwartz, Gregory W., et al.
Publicado: (2012) -
Evidence for the intrinsically nonlinear nature of receptive fields in vision
por: Bertalmío, Marcelo, et al.
Publicado: (2020)