Cargando…
Modulation of the lung inflammatory response to ozone by the estrous cycle
Emerging evidence suggests that sex differences exist in the control of lung innate immunity; however, the specific roles of sex hormones in the inflammatory response, and the mechanisms involved are unclear. Here, we investigated whether fluctuations in circulating hormone levels occurring in the m...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405886/ https://www.ncbi.nlm.nih.gov/pubmed/30848106 http://dx.doi.org/10.14814/phy2.14026 |
_version_ | 1783401179271659520 |
---|---|
author | Fuentes, Nathalie Cabello, Noe Nicoleau, Marvin Chroneos, Zissis C. Silveyra, Patricia |
author_facet | Fuentes, Nathalie Cabello, Noe Nicoleau, Marvin Chroneos, Zissis C. Silveyra, Patricia |
author_sort | Fuentes, Nathalie |
collection | PubMed |
description | Emerging evidence suggests that sex differences exist in the control of lung innate immunity; however, the specific roles of sex hormones in the inflammatory response, and the mechanisms involved are unclear. Here, we investigated whether fluctuations in circulating hormone levels occurring in the mouse estrous cycle could affect the inflammatory response to air pollution exposure. For this, we exposed female mice (C57BL/6J, 8 weeks old) at different phases of the estrous cycle to 2 ppm of ozone or filtered air (FA) for 3 h. Following exposure, we collected lung tissue and bronchoalveolar lavage fluid (BAL), and performed lung function measurements to evaluate inflammatory responses and respiratory mechanics. We found a differential inflammatory response to ozone in females exposed in the luteal phase (metestrus, diestrus) versus the follicular phase (proestrus, estrus). Females exposed to ozone in the follicular phase had significantly higher expression of inflammatory genes, including Ccl2, Cxcl2, Ccl20, and Il6, compared to females exposed in the luteal phase (P < 0.05), and displayed differential activation of regulatory pathways. Exposure to ozone in the follicular phase also resulted in higher BAL neutrophilia, lipocalin levels, and airway resistance than exposure in the luteal phase (P < 0.05). Together, these results show that the effects of ozone exposure in the female lung are affected by the estrous cycle phase, and potentially hormonal status. Future studies investigating air pollution effects and inflammation in women should consider the menstrual cycle phase and/or circulating hormone levels. |
format | Online Article Text |
id | pubmed-6405886 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64058862019-03-21 Modulation of the lung inflammatory response to ozone by the estrous cycle Fuentes, Nathalie Cabello, Noe Nicoleau, Marvin Chroneos, Zissis C. Silveyra, Patricia Physiol Rep Original Research Emerging evidence suggests that sex differences exist in the control of lung innate immunity; however, the specific roles of sex hormones in the inflammatory response, and the mechanisms involved are unclear. Here, we investigated whether fluctuations in circulating hormone levels occurring in the mouse estrous cycle could affect the inflammatory response to air pollution exposure. For this, we exposed female mice (C57BL/6J, 8 weeks old) at different phases of the estrous cycle to 2 ppm of ozone or filtered air (FA) for 3 h. Following exposure, we collected lung tissue and bronchoalveolar lavage fluid (BAL), and performed lung function measurements to evaluate inflammatory responses and respiratory mechanics. We found a differential inflammatory response to ozone in females exposed in the luteal phase (metestrus, diestrus) versus the follicular phase (proestrus, estrus). Females exposed to ozone in the follicular phase had significantly higher expression of inflammatory genes, including Ccl2, Cxcl2, Ccl20, and Il6, compared to females exposed in the luteal phase (P < 0.05), and displayed differential activation of regulatory pathways. Exposure to ozone in the follicular phase also resulted in higher BAL neutrophilia, lipocalin levels, and airway resistance than exposure in the luteal phase (P < 0.05). Together, these results show that the effects of ozone exposure in the female lung are affected by the estrous cycle phase, and potentially hormonal status. Future studies investigating air pollution effects and inflammation in women should consider the menstrual cycle phase and/or circulating hormone levels. John Wiley and Sons Inc. 2019-03-07 /pmc/articles/PMC6405886/ /pubmed/30848106 http://dx.doi.org/10.14814/phy2.14026 Text en © 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Fuentes, Nathalie Cabello, Noe Nicoleau, Marvin Chroneos, Zissis C. Silveyra, Patricia Modulation of the lung inflammatory response to ozone by the estrous cycle |
title | Modulation of the lung inflammatory response to ozone by the estrous cycle |
title_full | Modulation of the lung inflammatory response to ozone by the estrous cycle |
title_fullStr | Modulation of the lung inflammatory response to ozone by the estrous cycle |
title_full_unstemmed | Modulation of the lung inflammatory response to ozone by the estrous cycle |
title_short | Modulation of the lung inflammatory response to ozone by the estrous cycle |
title_sort | modulation of the lung inflammatory response to ozone by the estrous cycle |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405886/ https://www.ncbi.nlm.nih.gov/pubmed/30848106 http://dx.doi.org/10.14814/phy2.14026 |
work_keys_str_mv | AT fuentesnathalie modulationofthelunginflammatoryresponsetoozonebytheestrouscycle AT cabellonoe modulationofthelunginflammatoryresponsetoozonebytheestrouscycle AT nicoleaumarvin modulationofthelunginflammatoryresponsetoozonebytheestrouscycle AT chroneoszissisc modulationofthelunginflammatoryresponsetoozonebytheestrouscycle AT silveyrapatricia modulationofthelunginflammatoryresponsetoozonebytheestrouscycle |