Cargando…
Hub genes in a pan-cancer co-expression network show potential for predicting drug responses
Background: The topological analysis of networks extracted from different types of “omics” data is a useful strategy for characterizing biologically meaningful properties of the complex systems underlying these networks. In particular, the biological significance of highly connected genes in diverse...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406180/ https://www.ncbi.nlm.nih.gov/pubmed/30881689 http://dx.doi.org/10.12688/f1000research.17149.2 |
_version_ | 1783401241370427392 |
---|---|
author | Azuaje, Francisco Kaoma, Tony Jeanty, Céline Nazarov, Petr V. Muller, Arnaud Kim, Sang-Yoon Dittmar, Gunnar Golebiewska, Anna Niclou, Simone P. |
author_facet | Azuaje, Francisco Kaoma, Tony Jeanty, Céline Nazarov, Petr V. Muller, Arnaud Kim, Sang-Yoon Dittmar, Gunnar Golebiewska, Anna Niclou, Simone P. |
author_sort | Azuaje, Francisco |
collection | PubMed |
description | Background: The topological analysis of networks extracted from different types of “omics” data is a useful strategy for characterizing biologically meaningful properties of the complex systems underlying these networks. In particular, the biological significance of highly connected genes in diverse molecular networks has been previously determined using data from several model organisms and phenotypes. Despite such insights, the predictive potential of candidate hubs in gene co-expression networks in the specific context of cancer-related drug experiments remains to be deeply investigated. The examination of such associations may offer opportunities for the accurate prediction of anticancer drug responses. Methods: Here, we address this problem by: a) analyzing a co-expression network obtained from thousands of cancer cell lines, b) detecting significant network hubs, and c) assessing their capacity to predict drug sensitivity using data from thousands of drug experiments. We investigated the prediction capability of those genes using a multiple linear regression model, independent datasets, comparisons with other models and our own in vitro experiments. Results: These analyses led to the identification of 47 hub genes, which are implicated in a diverse range of cancer-relevant processes and pathways. Overall, encouraging agreements between predicted and observed drug sensitivities were observed in public datasets, as well as in our in vitro validations for four glioblastoma cell lines and four drugs. To facilitate further research, we share our hub-based drug sensitivity prediction model as an online tool. Conclusions: Our research shows that co-expression network hubs are biologically interesting and exhibit potential for predicting drug responses in vitro. These findings motivate further investigations about the relevance and application of our unbiased discovery approach in pre-clinical, translationally-oriented research. |
format | Online Article Text |
id | pubmed-6406180 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | F1000 Research Limited |
record_format | MEDLINE/PubMed |
spelling | pubmed-64061802019-03-15 Hub genes in a pan-cancer co-expression network show potential for predicting drug responses Azuaje, Francisco Kaoma, Tony Jeanty, Céline Nazarov, Petr V. Muller, Arnaud Kim, Sang-Yoon Dittmar, Gunnar Golebiewska, Anna Niclou, Simone P. F1000Res Research Article Background: The topological analysis of networks extracted from different types of “omics” data is a useful strategy for characterizing biologically meaningful properties of the complex systems underlying these networks. In particular, the biological significance of highly connected genes in diverse molecular networks has been previously determined using data from several model organisms and phenotypes. Despite such insights, the predictive potential of candidate hubs in gene co-expression networks in the specific context of cancer-related drug experiments remains to be deeply investigated. The examination of such associations may offer opportunities for the accurate prediction of anticancer drug responses. Methods: Here, we address this problem by: a) analyzing a co-expression network obtained from thousands of cancer cell lines, b) detecting significant network hubs, and c) assessing their capacity to predict drug sensitivity using data from thousands of drug experiments. We investigated the prediction capability of those genes using a multiple linear regression model, independent datasets, comparisons with other models and our own in vitro experiments. Results: These analyses led to the identification of 47 hub genes, which are implicated in a diverse range of cancer-relevant processes and pathways. Overall, encouraging agreements between predicted and observed drug sensitivities were observed in public datasets, as well as in our in vitro validations for four glioblastoma cell lines and four drugs. To facilitate further research, we share our hub-based drug sensitivity prediction model as an online tool. Conclusions: Our research shows that co-expression network hubs are biologically interesting and exhibit potential for predicting drug responses in vitro. These findings motivate further investigations about the relevance and application of our unbiased discovery approach in pre-clinical, translationally-oriented research. F1000 Research Limited 2019-03-05 /pmc/articles/PMC6406180/ /pubmed/30881689 http://dx.doi.org/10.12688/f1000research.17149.2 Text en Copyright: © 2019 Azuaje F et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Azuaje, Francisco Kaoma, Tony Jeanty, Céline Nazarov, Petr V. Muller, Arnaud Kim, Sang-Yoon Dittmar, Gunnar Golebiewska, Anna Niclou, Simone P. Hub genes in a pan-cancer co-expression network show potential for predicting drug responses |
title | Hub genes in a pan-cancer co-expression network show potential for predicting drug responses |
title_full | Hub genes in a pan-cancer co-expression network show potential for predicting drug responses |
title_fullStr | Hub genes in a pan-cancer co-expression network show potential for predicting drug responses |
title_full_unstemmed | Hub genes in a pan-cancer co-expression network show potential for predicting drug responses |
title_short | Hub genes in a pan-cancer co-expression network show potential for predicting drug responses |
title_sort | hub genes in a pan-cancer co-expression network show potential for predicting drug responses |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406180/ https://www.ncbi.nlm.nih.gov/pubmed/30881689 http://dx.doi.org/10.12688/f1000research.17149.2 |
work_keys_str_mv | AT azuajefrancisco hubgenesinapancancercoexpressionnetworkshowpotentialforpredictingdrugresponses AT kaomatony hubgenesinapancancercoexpressionnetworkshowpotentialforpredictingdrugresponses AT jeantyceline hubgenesinapancancercoexpressionnetworkshowpotentialforpredictingdrugresponses AT nazarovpetrv hubgenesinapancancercoexpressionnetworkshowpotentialforpredictingdrugresponses AT mullerarnaud hubgenesinapancancercoexpressionnetworkshowpotentialforpredictingdrugresponses AT kimsangyoon hubgenesinapancancercoexpressionnetworkshowpotentialforpredictingdrugresponses AT dittmargunnar hubgenesinapancancercoexpressionnetworkshowpotentialforpredictingdrugresponses AT golebiewskaanna hubgenesinapancancercoexpressionnetworkshowpotentialforpredictingdrugresponses AT niclousimonep hubgenesinapancancercoexpressionnetworkshowpotentialforpredictingdrugresponses |