Cargando…
Developing a Prognostic Gene Panel of Epithelial Ovarian Cancer Patients by a Machine Learning Model
Epithelial ovarian cancer patients usually relapse after primary management. We utilized the support vector machine algorithm to develop a model for the chemo-response using the Cancer Cell Line Encyclopedia (CCLE) and validated the model in The Cancer Genome Atlas (TCGA) and the GSE9891 dataset. Fi...
Autores principales: | Lu, Tzu-Pin, Kuo, Kuan-Ting, Chen, Ching-Hsuan, Chang, Ming-Cheng, Lin, Hsiu-Ping, Hu, Yu-Hao, Chiang, Ying-Cheng, Cheng, Wen-Fang, Chen, Chi-An |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406249/ https://www.ncbi.nlm.nih.gov/pubmed/30823599 http://dx.doi.org/10.3390/cancers11020270 |
Ejemplares similares
-
A DNA Damage Response Gene Panel for Different Histologic Types of Epithelial Ovarian Carcinomas and Their Outcomes
por: Chiang, Ying-Cheng, et al.
Publicado: (2021) -
Outcome and prognostic factors of unexpected ovarian carcinomas
por: Cheng, Ching‐Yu, et al.
Publicado: (2022) -
Overexpression of CHI3L1 is associated with chemoresistance and poor outcome of epithelial ovarian carcinoma
por: Chiang, Ying-Cheng, et al.
Publicado: (2015) -
Prognostic Factors of Early Stage Epithelial Ovarian Carcinoma
por: Hsieh, Shu-Feng, et al.
Publicado: (2019) -
Predicting outcomes after trauma: Prognostic model development based on admission features through machine learning
por: Lee, Kuo-Chang, et al.
Publicado: (2021)