Cargando…
Valley Fever on the Rise—Searching for Microbial Antagonists to the Fungal Pathogen Coccidioides immitis
The incidence of coccidioidomycosis, also known as Valley Fever, is increasing in the Southwestern United States and Mexico. Despite considerable efforts, a vaccine to protect humans from this disease is not forthcoming. The aim of this project was to isolate and phylogenetically compare bacterial s...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406340/ https://www.ncbi.nlm.nih.gov/pubmed/30682831 http://dx.doi.org/10.3390/microorganisms7020031 |
_version_ | 1783401278749016064 |
---|---|
author | Lauer, Antje Baal, Joe Darryl Mendes, Susan D. Casimiro, Kayla Nicole Passaglia, Alyce Kayes Valenzuela, Alex Humberto Guibert, Gerry |
author_facet | Lauer, Antje Baal, Joe Darryl Mendes, Susan D. Casimiro, Kayla Nicole Passaglia, Alyce Kayes Valenzuela, Alex Humberto Guibert, Gerry |
author_sort | Lauer, Antje |
collection | PubMed |
description | The incidence of coccidioidomycosis, also known as Valley Fever, is increasing in the Southwestern United States and Mexico. Despite considerable efforts, a vaccine to protect humans from this disease is not forthcoming. The aim of this project was to isolate and phylogenetically compare bacterial species that could serve as biocontrol candidates to suppress the growth of Coccidioides immitis, the causative agent of coccidioidomycosis, in eroded soils or in areas close to human settlements that are being developed. Soil erosion in Coccidioides endemic areas is leading to substantial emissions of fugitive dust that can contain arthroconidia of the pathogen and thus it is becoming a health hazard. Natural microbial antagonists to C. immitis, that are adapted to arid desert soils could be used for biocontrol attempts to suppress the growth of the pathogen in situ to reduce the risk for humans and animals of contracting coccidioidomycosis. Bacteria were isolated from soil samples obtained near Bakersfield, California. Subsequently, pairwise challenge assays with bacterial pure cultures were initially performed against Uncinocarpus reesii, a non-pathogenic relative of C. immitis on media plates. Bacterial isolates that exhibited strongly antifungal properties were then re-challenged against C. immitis. Strongly anti-C. immitis bacterial isolates related to Bacillus subtilis and Streptomyces spp. were isolated, and their antifungal spectrum was investigated using a selection of environmental fungi. |
format | Online Article Text |
id | pubmed-6406340 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64063402019-03-26 Valley Fever on the Rise—Searching for Microbial Antagonists to the Fungal Pathogen Coccidioides immitis Lauer, Antje Baal, Joe Darryl Mendes, Susan D. Casimiro, Kayla Nicole Passaglia, Alyce Kayes Valenzuela, Alex Humberto Guibert, Gerry Microorganisms Article The incidence of coccidioidomycosis, also known as Valley Fever, is increasing in the Southwestern United States and Mexico. Despite considerable efforts, a vaccine to protect humans from this disease is not forthcoming. The aim of this project was to isolate and phylogenetically compare bacterial species that could serve as biocontrol candidates to suppress the growth of Coccidioides immitis, the causative agent of coccidioidomycosis, in eroded soils or in areas close to human settlements that are being developed. Soil erosion in Coccidioides endemic areas is leading to substantial emissions of fugitive dust that can contain arthroconidia of the pathogen and thus it is becoming a health hazard. Natural microbial antagonists to C. immitis, that are adapted to arid desert soils could be used for biocontrol attempts to suppress the growth of the pathogen in situ to reduce the risk for humans and animals of contracting coccidioidomycosis. Bacteria were isolated from soil samples obtained near Bakersfield, California. Subsequently, pairwise challenge assays with bacterial pure cultures were initially performed against Uncinocarpus reesii, a non-pathogenic relative of C. immitis on media plates. Bacterial isolates that exhibited strongly antifungal properties were then re-challenged against C. immitis. Strongly anti-C. immitis bacterial isolates related to Bacillus subtilis and Streptomyces spp. were isolated, and their antifungal spectrum was investigated using a selection of environmental fungi. MDPI 2019-01-24 /pmc/articles/PMC6406340/ /pubmed/30682831 http://dx.doi.org/10.3390/microorganisms7020031 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lauer, Antje Baal, Joe Darryl Mendes, Susan D. Casimiro, Kayla Nicole Passaglia, Alyce Kayes Valenzuela, Alex Humberto Guibert, Gerry Valley Fever on the Rise—Searching for Microbial Antagonists to the Fungal Pathogen Coccidioides immitis |
title | Valley Fever on the Rise—Searching for Microbial Antagonists to the Fungal Pathogen Coccidioides immitis |
title_full | Valley Fever on the Rise—Searching for Microbial Antagonists to the Fungal Pathogen Coccidioides immitis |
title_fullStr | Valley Fever on the Rise—Searching for Microbial Antagonists to the Fungal Pathogen Coccidioides immitis |
title_full_unstemmed | Valley Fever on the Rise—Searching for Microbial Antagonists to the Fungal Pathogen Coccidioides immitis |
title_short | Valley Fever on the Rise—Searching for Microbial Antagonists to the Fungal Pathogen Coccidioides immitis |
title_sort | valley fever on the rise—searching for microbial antagonists to the fungal pathogen coccidioides immitis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406340/ https://www.ncbi.nlm.nih.gov/pubmed/30682831 http://dx.doi.org/10.3390/microorganisms7020031 |
work_keys_str_mv | AT lauerantje valleyfeverontherisesearchingformicrobialantagoniststothefungalpathogencoccidioidesimmitis AT baaljoedarryl valleyfeverontherisesearchingformicrobialantagoniststothefungalpathogencoccidioidesimmitis AT mendessusand valleyfeverontherisesearchingformicrobialantagoniststothefungalpathogencoccidioidesimmitis AT casimirokaylanicole valleyfeverontherisesearchingformicrobialantagoniststothefungalpathogencoccidioidesimmitis AT passagliaalycekayes valleyfeverontherisesearchingformicrobialantagoniststothefungalpathogencoccidioidesimmitis AT valenzuelaalexhumberto valleyfeverontherisesearchingformicrobialantagoniststothefungalpathogencoccidioidesimmitis AT guibertgerry valleyfeverontherisesearchingformicrobialantagoniststothefungalpathogencoccidioidesimmitis |