Cargando…

A Simplified Genomic Profiling Approach Predicts Outcome in Metastatic Colorectal Cancer

The response of metastatic colorectal cancer (mCRC) to the first-line conventional combination therapy is highly variable, reflecting the elevated heterogeneity of the disease. The genetic alterations underlying this heterogeneity have been thoroughly characterized through omic approaches requiring...

Descripción completa

Detalles Bibliográficos
Autores principales: Capalbo, Carlo, Belardinilli, Francesca, Raimondo, Domenico, Milanetti, Edoardo, Malapelle, Umberto, Pisapia, Pasquale, Magri, Valentina, Prete, Alessandra, Pecorari, Silvia, Colella, Mariarosaria, Coppa, Anna, Bonfiglio, Caterina, Nicolussi, Arianna, Valentini, Virginia, Tessitore, Alessandra, Cardinali, Beatrice, Petroni, Marialaura, Infante, Paola, Santoni, Matteo, Filetti, Marco, Colicchia, Valeria, Paci, Paola, Mezi, Silvia, Longo, Flavia, Cortesi, Enrico, Marchetti, Paolo, Troncone, Giancarlo, Bellavia, Diana, Canettieri, Gianluca, Giannini, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406354/
https://www.ncbi.nlm.nih.gov/pubmed/30691222
http://dx.doi.org/10.3390/cancers11020147
_version_ 1783401282004844544
author Capalbo, Carlo
Belardinilli, Francesca
Raimondo, Domenico
Milanetti, Edoardo
Malapelle, Umberto
Pisapia, Pasquale
Magri, Valentina
Prete, Alessandra
Pecorari, Silvia
Colella, Mariarosaria
Coppa, Anna
Bonfiglio, Caterina
Nicolussi, Arianna
Valentini, Virginia
Tessitore, Alessandra
Cardinali, Beatrice
Petroni, Marialaura
Infante, Paola
Santoni, Matteo
Filetti, Marco
Colicchia, Valeria
Paci, Paola
Mezi, Silvia
Longo, Flavia
Cortesi, Enrico
Marchetti, Paolo
Troncone, Giancarlo
Bellavia, Diana
Canettieri, Gianluca
Giannini, Giuseppe
author_facet Capalbo, Carlo
Belardinilli, Francesca
Raimondo, Domenico
Milanetti, Edoardo
Malapelle, Umberto
Pisapia, Pasquale
Magri, Valentina
Prete, Alessandra
Pecorari, Silvia
Colella, Mariarosaria
Coppa, Anna
Bonfiglio, Caterina
Nicolussi, Arianna
Valentini, Virginia
Tessitore, Alessandra
Cardinali, Beatrice
Petroni, Marialaura
Infante, Paola
Santoni, Matteo
Filetti, Marco
Colicchia, Valeria
Paci, Paola
Mezi, Silvia
Longo, Flavia
Cortesi, Enrico
Marchetti, Paolo
Troncone, Giancarlo
Bellavia, Diana
Canettieri, Gianluca
Giannini, Giuseppe
author_sort Capalbo, Carlo
collection PubMed
description The response of metastatic colorectal cancer (mCRC) to the first-line conventional combination therapy is highly variable, reflecting the elevated heterogeneity of the disease. The genetic alterations underlying this heterogeneity have been thoroughly characterized through omic approaches requiring elevated efforts and costs. In order to translate the knowledge of CRC molecular heterogeneity into a practical clinical approach, we utilized a simplified Next Generation Sequencing (NGS) based platform to screen a cohort of 77 patients treated with first-line conventional therapy. Samples were sequenced using a panel of hotspots and targeted regions of 22 genes commonly involved in CRC. This revealed 51 patients carrying actionable gene mutations, 22 of which carried druggable alterations. These mutations were frequently associated with additional genetic alterations. To take into account this molecular complexity and assisted by an unbiased bioinformatic analysis, we defined three subgroups of patients carrying distinct molecular patterns. We demonstrated these three molecular subgroups are associated with a different response to first-line conventional combination therapies. The best outcome was achieved in patients exclusively carrying mutations on TP53 and/or RAS genes. By contrast, in patients carrying mutations in any of the other genes, alone or associated with mutations of TP53/RAS, the expected response is much worse compared to patients with exclusive TP53/RAS mutations. Additionally, our data indicate that the standard approach has limited efficacy in patients without any mutations in the genes included in the panel. In conclusion, we identified a reliable and easy-to-use approach for a simplified molecular-based stratification of mCRC patients that predicts the efficacy of the first-line conventional combination therapy.
format Online
Article
Text
id pubmed-6406354
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-64063542019-03-21 A Simplified Genomic Profiling Approach Predicts Outcome in Metastatic Colorectal Cancer Capalbo, Carlo Belardinilli, Francesca Raimondo, Domenico Milanetti, Edoardo Malapelle, Umberto Pisapia, Pasquale Magri, Valentina Prete, Alessandra Pecorari, Silvia Colella, Mariarosaria Coppa, Anna Bonfiglio, Caterina Nicolussi, Arianna Valentini, Virginia Tessitore, Alessandra Cardinali, Beatrice Petroni, Marialaura Infante, Paola Santoni, Matteo Filetti, Marco Colicchia, Valeria Paci, Paola Mezi, Silvia Longo, Flavia Cortesi, Enrico Marchetti, Paolo Troncone, Giancarlo Bellavia, Diana Canettieri, Gianluca Giannini, Giuseppe Cancers (Basel) Article The response of metastatic colorectal cancer (mCRC) to the first-line conventional combination therapy is highly variable, reflecting the elevated heterogeneity of the disease. The genetic alterations underlying this heterogeneity have been thoroughly characterized through omic approaches requiring elevated efforts and costs. In order to translate the knowledge of CRC molecular heterogeneity into a practical clinical approach, we utilized a simplified Next Generation Sequencing (NGS) based platform to screen a cohort of 77 patients treated with first-line conventional therapy. Samples were sequenced using a panel of hotspots and targeted regions of 22 genes commonly involved in CRC. This revealed 51 patients carrying actionable gene mutations, 22 of which carried druggable alterations. These mutations were frequently associated with additional genetic alterations. To take into account this molecular complexity and assisted by an unbiased bioinformatic analysis, we defined three subgroups of patients carrying distinct molecular patterns. We demonstrated these three molecular subgroups are associated with a different response to first-line conventional combination therapies. The best outcome was achieved in patients exclusively carrying mutations on TP53 and/or RAS genes. By contrast, in patients carrying mutations in any of the other genes, alone or associated with mutations of TP53/RAS, the expected response is much worse compared to patients with exclusive TP53/RAS mutations. Additionally, our data indicate that the standard approach has limited efficacy in patients without any mutations in the genes included in the panel. In conclusion, we identified a reliable and easy-to-use approach for a simplified molecular-based stratification of mCRC patients that predicts the efficacy of the first-line conventional combination therapy. MDPI 2019-01-27 /pmc/articles/PMC6406354/ /pubmed/30691222 http://dx.doi.org/10.3390/cancers11020147 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Capalbo, Carlo
Belardinilli, Francesca
Raimondo, Domenico
Milanetti, Edoardo
Malapelle, Umberto
Pisapia, Pasquale
Magri, Valentina
Prete, Alessandra
Pecorari, Silvia
Colella, Mariarosaria
Coppa, Anna
Bonfiglio, Caterina
Nicolussi, Arianna
Valentini, Virginia
Tessitore, Alessandra
Cardinali, Beatrice
Petroni, Marialaura
Infante, Paola
Santoni, Matteo
Filetti, Marco
Colicchia, Valeria
Paci, Paola
Mezi, Silvia
Longo, Flavia
Cortesi, Enrico
Marchetti, Paolo
Troncone, Giancarlo
Bellavia, Diana
Canettieri, Gianluca
Giannini, Giuseppe
A Simplified Genomic Profiling Approach Predicts Outcome in Metastatic Colorectal Cancer
title A Simplified Genomic Profiling Approach Predicts Outcome in Metastatic Colorectal Cancer
title_full A Simplified Genomic Profiling Approach Predicts Outcome in Metastatic Colorectal Cancer
title_fullStr A Simplified Genomic Profiling Approach Predicts Outcome in Metastatic Colorectal Cancer
title_full_unstemmed A Simplified Genomic Profiling Approach Predicts Outcome in Metastatic Colorectal Cancer
title_short A Simplified Genomic Profiling Approach Predicts Outcome in Metastatic Colorectal Cancer
title_sort simplified genomic profiling approach predicts outcome in metastatic colorectal cancer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406354/
https://www.ncbi.nlm.nih.gov/pubmed/30691222
http://dx.doi.org/10.3390/cancers11020147
work_keys_str_mv AT capalbocarlo asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT belardinillifrancesca asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT raimondodomenico asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT milanettiedoardo asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT malapelleumberto asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT pisapiapasquale asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT magrivalentina asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT pretealessandra asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT pecorarisilvia asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT colellamariarosaria asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT coppaanna asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT bonfigliocaterina asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT nicolussiarianna asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT valentinivirginia asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT tessitorealessandra asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT cardinalibeatrice asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT petronimarialaura asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT infantepaola asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT santonimatteo asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT filettimarco asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT colicchiavaleria asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT pacipaola asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT mezisilvia asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT longoflavia asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT cortesienrico asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT marchettipaolo asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT tronconegiancarlo asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT bellaviadiana asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT canettierigianluca asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT gianninigiuseppe asimplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT capalbocarlo simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT belardinillifrancesca simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT raimondodomenico simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT milanettiedoardo simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT malapelleumberto simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT pisapiapasquale simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT magrivalentina simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT pretealessandra simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT pecorarisilvia simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT colellamariarosaria simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT coppaanna simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT bonfigliocaterina simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT nicolussiarianna simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT valentinivirginia simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT tessitorealessandra simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT cardinalibeatrice simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT petronimarialaura simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT infantepaola simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT santonimatteo simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT filettimarco simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT colicchiavaleria simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT pacipaola simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT mezisilvia simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT longoflavia simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT cortesienrico simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT marchettipaolo simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT tronconegiancarlo simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT bellaviadiana simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT canettierigianluca simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer
AT gianninigiuseppe simplifiedgenomicprofilingapproachpredictsoutcomeinmetastaticcolorectalcancer