Cargando…
Quantitative Distribution of DNA, RNA, Histone and Proteins Other than Histone in Mammalian Cells, Nuclei and a Chromosome at High Resolution Observed by Scanning Transmission Soft X-Ray Microscopy (STXM)
Soft X-ray microscopy was applied to study the quantitative distribution of DNA, RNA, histone, and proteins other than histone (represented by BSA) in mammalian cells, apoptotic nuclei, and a chromosome at spatial resolutions of 100 to 400 nm. The relative distribution of closely related molecules,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406381/ https://www.ncbi.nlm.nih.gov/pubmed/30781492 http://dx.doi.org/10.3390/cells8020164 |
Sumario: | Soft X-ray microscopy was applied to study the quantitative distribution of DNA, RNA, histone, and proteins other than histone (represented by BSA) in mammalian cells, apoptotic nuclei, and a chromosome at spatial resolutions of 100 to 400 nm. The relative distribution of closely related molecules, such as DNA and RNA, was discriminated by the singular value decomposition (SVD) method using aXis2000 software. Quantities of nucleic acids and proteins were evaluated using characteristic absorption properties due to the 1s–π * transition of N=C in nucleic acids and amide in proteins, respectively, in the absorption spectra at the nitrogen K absorption edge. The results showed that DNA and histone were located in the nucleus. By contrast, RNA was clearly discriminated and found mainly in the cytoplasm. Interestingly, in a chromosome image, DNA and histone were found in the center, surrounded by RNA and proteins other than histone. The amount of DNA in the chromosome was estimated to be 0.73 pg, and the content of RNA, histone, and proteins other than histone, relative to DNA, was 0.48, 0.28, and 4.04, respectively. The method we present in this study could be a powerful approach for the quantitative molecular mapping of biological samples at high resolution. |
---|