Cargando…
Targeting mTOR in Acute Lymphoblastic Leukemia
Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic disorder and constitutes approximately 25% of cancer diagnoses among children and teenagers. Pediatric patients have a favourable prognosis, with 5-years overall survival rates near 90%, while adult ALL still correlates with poorer surv...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406494/ https://www.ncbi.nlm.nih.gov/pubmed/30795552 http://dx.doi.org/10.3390/cells8020190 |
_version_ | 1783401317419450368 |
---|---|
author | Simioni, Carolina Martelli, Alberto M. Zauli, Giorgio Melloni, Elisabetta Neri, Luca M. |
author_facet | Simioni, Carolina Martelli, Alberto M. Zauli, Giorgio Melloni, Elisabetta Neri, Luca M. |
author_sort | Simioni, Carolina |
collection | PubMed |
description | Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic disorder and constitutes approximately 25% of cancer diagnoses among children and teenagers. Pediatric patients have a favourable prognosis, with 5-years overall survival rates near 90%, while adult ALL still correlates with poorer survival. However, during the past few decades, the therapeutic outcome of adult ALL was significantly ameliorated, mainly due to intensive pediatric-based protocols of chemotherapy. Mammalian (or mechanistic) target of rapamycin (mTOR) is a conserved serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase family (PIKK) and resides in two distinct signalling complexes named mTORC1, involved in mRNA translation and protein synthesis and mTORC2 that controls cell survival and migration. Moreover, both complexes are remarkably involved in metabolism regulation. Growing evidence reports that mTOR dysregulation is related to metastatic potential, cell proliferation and angiogenesis and given that PI3K/Akt/mTOR network activation is often associated with poor prognosis and chemoresistance in ALL, there is a constant need to discover novel inhibitors for ALL treatment. Here, the current knowledge of mTOR signalling and the development of anti-mTOR compounds are documented, reporting the most relevant results from both preclinical and clinical studies in ALL that have contributed significantly into their efficacy or failure. |
format | Online Article Text |
id | pubmed-6406494 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64064942019-03-19 Targeting mTOR in Acute Lymphoblastic Leukemia Simioni, Carolina Martelli, Alberto M. Zauli, Giorgio Melloni, Elisabetta Neri, Luca M. Cells Review Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic disorder and constitutes approximately 25% of cancer diagnoses among children and teenagers. Pediatric patients have a favourable prognosis, with 5-years overall survival rates near 90%, while adult ALL still correlates with poorer survival. However, during the past few decades, the therapeutic outcome of adult ALL was significantly ameliorated, mainly due to intensive pediatric-based protocols of chemotherapy. Mammalian (or mechanistic) target of rapamycin (mTOR) is a conserved serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase family (PIKK) and resides in two distinct signalling complexes named mTORC1, involved in mRNA translation and protein synthesis and mTORC2 that controls cell survival and migration. Moreover, both complexes are remarkably involved in metabolism regulation. Growing evidence reports that mTOR dysregulation is related to metastatic potential, cell proliferation and angiogenesis and given that PI3K/Akt/mTOR network activation is often associated with poor prognosis and chemoresistance in ALL, there is a constant need to discover novel inhibitors for ALL treatment. Here, the current knowledge of mTOR signalling and the development of anti-mTOR compounds are documented, reporting the most relevant results from both preclinical and clinical studies in ALL that have contributed significantly into their efficacy or failure. MDPI 2019-02-21 /pmc/articles/PMC6406494/ /pubmed/30795552 http://dx.doi.org/10.3390/cells8020190 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Simioni, Carolina Martelli, Alberto M. Zauli, Giorgio Melloni, Elisabetta Neri, Luca M. Targeting mTOR in Acute Lymphoblastic Leukemia |
title | Targeting mTOR in Acute Lymphoblastic Leukemia |
title_full | Targeting mTOR in Acute Lymphoblastic Leukemia |
title_fullStr | Targeting mTOR in Acute Lymphoblastic Leukemia |
title_full_unstemmed | Targeting mTOR in Acute Lymphoblastic Leukemia |
title_short | Targeting mTOR in Acute Lymphoblastic Leukemia |
title_sort | targeting mtor in acute lymphoblastic leukemia |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406494/ https://www.ncbi.nlm.nih.gov/pubmed/30795552 http://dx.doi.org/10.3390/cells8020190 |
work_keys_str_mv | AT simionicarolina targetingmtorinacutelymphoblasticleukemia AT martellialbertom targetingmtorinacutelymphoblasticleukemia AT zauligiorgio targetingmtorinacutelymphoblasticleukemia AT mellonielisabetta targetingmtorinacutelymphoblasticleukemia AT nerilucam targetingmtorinacutelymphoblasticleukemia |