Cargando…
Signal Transduction across the Nuclear Envelope: Role of the LINC Complex in Bidirectional Signaling
The primary functions of the nuclear envelope are to isolate the nucleoplasm and its contents from the cytoplasm as well as maintain the spatial and structural integrity of the nucleus. The nuclear envelope also plays a role in the transfer of various molecules and signals to and from the nucleus. T...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406650/ https://www.ncbi.nlm.nih.gov/pubmed/30720758 http://dx.doi.org/10.3390/cells8020124 |
Sumario: | The primary functions of the nuclear envelope are to isolate the nucleoplasm and its contents from the cytoplasm as well as maintain the spatial and structural integrity of the nucleus. The nuclear envelope also plays a role in the transfer of various molecules and signals to and from the nucleus. To reach the nucleus, an extracellular signal must be transmitted across three biological membranes: the plasma membrane, as well as the inner and outer nuclear membranes. While signal transduction across the plasma membrane is well characterized, signal transduction across the nuclear envelope, which is essential for cellular functions such as transcriptional regulation and cell cycle progression, remains poorly understood. As a physical entity, the nuclear envelope, which contains more than 100 proteins, functions as a binding scaffold for both the cytoskeleton and the nucleoskeleton, and acts in mechanotransduction by relaying extracellular signals to the nucleus. Recent results show that the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, which is a conserved molecular bridge that spans the nuclear envelope and connects the nucleoskeleton and cytoskeleton, is also capable of transmitting information bidirectionally between the nucleus and the cytoplasm. This short review discusses bidirectional signal transduction across the nuclear envelope, with a particular focus on mechanotransduction. |
---|