Cargando…
Heat Shock Protein 27 Phosphorylation Regulates Tumor Cell Migration under Shear Stress
Heat shock protein 27 (HSP27) is a multifunctional protein that undergoes significant changes in its expression and phosphorylation in response to shear stress stimuli, suggesting that it may be involved in mechanotransduction. However, the mechanism of HSP27 affecting tumor cell migration under she...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406706/ https://www.ncbi.nlm.nih.gov/pubmed/30704117 http://dx.doi.org/10.3390/biom9020050 |
_version_ | 1783401381658361856 |
---|---|
author | Zhang, Baohong Xie, Fei Aziz, Aziz ur Rehman Shao, Shuai Li, Wang Deng, Sha Liao, Xiaoling Liu, Bo |
author_facet | Zhang, Baohong Xie, Fei Aziz, Aziz ur Rehman Shao, Shuai Li, Wang Deng, Sha Liao, Xiaoling Liu, Bo |
author_sort | Zhang, Baohong |
collection | PubMed |
description | Heat shock protein 27 (HSP27) is a multifunctional protein that undergoes significant changes in its expression and phosphorylation in response to shear stress stimuli, suggesting that it may be involved in mechanotransduction. However, the mechanism of HSP27 affecting tumor cell migration under shear stress is still not clear. In this study, HSP27-enhanced cyan fluorescent protein (ECFP) and HSP27-Ypet plasmids are constructed to visualize the self-polymerization of HSP27 in living cells based on fluorescence resonance energy transfer technology. The results show that shear stress induces polar distribution of HSP27 to regulate the dynamic structure at the cell leading edge. Shear stress also promotes HSP27 depolymerization to small molecules and then regulates polar actin accumulation and focal adhesion kinase (FAK) polar activation, which further promotes tumor cell migration. This study suggests that HSP27 plays an important role in the regulation of shear stress-induced HeLa cell migration, and it also provides a theoretical basis for HSP27 as a potential drug target for metastasis. |
format | Online Article Text |
id | pubmed-6406706 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64067062019-03-13 Heat Shock Protein 27 Phosphorylation Regulates Tumor Cell Migration under Shear Stress Zhang, Baohong Xie, Fei Aziz, Aziz ur Rehman Shao, Shuai Li, Wang Deng, Sha Liao, Xiaoling Liu, Bo Biomolecules Article Heat shock protein 27 (HSP27) is a multifunctional protein that undergoes significant changes in its expression and phosphorylation in response to shear stress stimuli, suggesting that it may be involved in mechanotransduction. However, the mechanism of HSP27 affecting tumor cell migration under shear stress is still not clear. In this study, HSP27-enhanced cyan fluorescent protein (ECFP) and HSP27-Ypet plasmids are constructed to visualize the self-polymerization of HSP27 in living cells based on fluorescence resonance energy transfer technology. The results show that shear stress induces polar distribution of HSP27 to regulate the dynamic structure at the cell leading edge. Shear stress also promotes HSP27 depolymerization to small molecules and then regulates polar actin accumulation and focal adhesion kinase (FAK) polar activation, which further promotes tumor cell migration. This study suggests that HSP27 plays an important role in the regulation of shear stress-induced HeLa cell migration, and it also provides a theoretical basis for HSP27 as a potential drug target for metastasis. MDPI 2019-01-30 /pmc/articles/PMC6406706/ /pubmed/30704117 http://dx.doi.org/10.3390/biom9020050 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Baohong Xie, Fei Aziz, Aziz ur Rehman Shao, Shuai Li, Wang Deng, Sha Liao, Xiaoling Liu, Bo Heat Shock Protein 27 Phosphorylation Regulates Tumor Cell Migration under Shear Stress |
title | Heat Shock Protein 27 Phosphorylation Regulates Tumor Cell Migration under Shear Stress |
title_full | Heat Shock Protein 27 Phosphorylation Regulates Tumor Cell Migration under Shear Stress |
title_fullStr | Heat Shock Protein 27 Phosphorylation Regulates Tumor Cell Migration under Shear Stress |
title_full_unstemmed | Heat Shock Protein 27 Phosphorylation Regulates Tumor Cell Migration under Shear Stress |
title_short | Heat Shock Protein 27 Phosphorylation Regulates Tumor Cell Migration under Shear Stress |
title_sort | heat shock protein 27 phosphorylation regulates tumor cell migration under shear stress |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406706/ https://www.ncbi.nlm.nih.gov/pubmed/30704117 http://dx.doi.org/10.3390/biom9020050 |
work_keys_str_mv | AT zhangbaohong heatshockprotein27phosphorylationregulatestumorcellmigrationundershearstress AT xiefei heatshockprotein27phosphorylationregulatestumorcellmigrationundershearstress AT azizazizurrehman heatshockprotein27phosphorylationregulatestumorcellmigrationundershearstress AT shaoshuai heatshockprotein27phosphorylationregulatestumorcellmigrationundershearstress AT liwang heatshockprotein27phosphorylationregulatestumorcellmigrationundershearstress AT dengsha heatshockprotein27phosphorylationregulatestumorcellmigrationundershearstress AT liaoxiaoling heatshockprotein27phosphorylationregulatestumorcellmigrationundershearstress AT liubo heatshockprotein27phosphorylationregulatestumorcellmigrationundershearstress |