Cargando…
Exploration of Machine Learning for Hyperuricemia Prediction Models Based on Basic Health Checkup Tests
Background: Machine learning (ML) is a promising methodology for classification and prediction applications in healthcare. However, this method has not been practically established for clinical data. Hyperuricemia is a biomarker of various chronic diseases. We aimed to predict uric acid status from...
Autores principales: | Lee, Sangwoo, Choe, Eun Kyung, Park, Boram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406925/ https://www.ncbi.nlm.nih.gov/pubmed/30717373 http://dx.doi.org/10.3390/jcm8020172 |
Ejemplares similares
-
Prediction model of random forest for the risk of hyperuricemia in a Chinese basic health checkup test
por: Gao, Yuhan, et al.
Publicado: (2021) -
Prediction of mortality risk of health checkup participants using machine learning-based models: the J-SHC study
por: Kawano, Kazuharu, et al.
Publicado: (2022) -
A dynamic machine learning model for prediction of NAFLD in a health checkup population: A longitudinal study
por: Deng, Yuhan, et al.
Publicado: (2023) -
Prevalence and Risk Factors of Hyperuricemia in the Urban Health Checkup Population in Xinjiang, China: A Cross-Sectional Study
por: Wu, Xuanxia, et al.
Publicado: (2023) -
BAMixChecker: an automated checkup tool for matched sample pairs in NGS cohort
por: Chun, Hein, et al.
Publicado: (2019)