Cargando…

The Role of Lactate Metabolism in Prostate Cancer Progression and Metastases Revealed by Dual-Agent Hyperpolarized (13)C MRSI

This study applied a dual-agent, (13)C-pyruvate and (13)C-urea, hyperpolarized (13)C magnetic resonance spectroscopic imaging (MRSI) and multi-parametric (mp) (1)H magnetic resonance imaging (MRI) approach in the transgenic adenocarcinoma of mouse prostate (TRAMP) model to investigate changes in tum...

Descripción completa

Detalles Bibliográficos
Autores principales: Bok, Robert, Lee, Jessie, Sriram, Renuka, Keshari, Kayvan, Sukumar, Subramaniam, Daneshmandi, Saeed, Korenchan, David E., Flavell, Robert R., Vigneron, Daniel B., Kurhanewicz, John, Seth, Pankaj
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406929/
https://www.ncbi.nlm.nih.gov/pubmed/30813322
http://dx.doi.org/10.3390/cancers11020257
Descripción
Sumario:This study applied a dual-agent, (13)C-pyruvate and (13)C-urea, hyperpolarized (13)C magnetic resonance spectroscopic imaging (MRSI) and multi-parametric (mp) (1)H magnetic resonance imaging (MRI) approach in the transgenic adenocarcinoma of mouse prostate (TRAMP) model to investigate changes in tumor perfusion and lactate metabolism during prostate cancer development, progression and metastases, and after lactate dehydrogenase-A (LDHA) knock-out. An increased Warburg effect, as measured by an elevated hyperpolarized (HP) Lactate/Pyruvate (Lac/Pyr) ratio, and associated Ldha expression and LDH activity were significantly higher in high- versus low-grade TRAMP tumors and normal prostates. The hypoxic tumor microenvironment in high-grade tumors, as measured by significantly decreased HP (13)C-urea perfusion and increased PIM staining, played a key role in increasing lactate production through increased Hif1α and then Ldha expression. Increased lactate induced Mct4 expression and an acidic tumor microenvironment that provided a potential mechanism for the observed high rate of lymph node (86%) and liver (33%) metastases. The Ldha knockdown in the triple-transgenic mouse model of prostate cancer resulted in a significant reduction in HP Lac/Pyr, which preceded a reduction in tumor volume or apparent water diffusion coefficient (ADC). The Ldha gene knockdown significantly reduced primary tumor growth and reduced lymph node and visceral metastases. These data suggested a metabolic transformation from low- to high-grade prostate cancer including an increased Warburg effect, decreased perfusion, and increased metastatic potential. Moreover, these data suggested that LDH activity and lactate are required for tumor progression. The lactate metabolism changes during prostate cancer provided the motivation for applying hyperpolarized (13)C MRSI to detect aggressive disease at diagnosis and predict early therapeutic response.