Cargando…
A Deep Learning Model for Automated Sleep Stages Classification Using PSG Signals
Sleep disorder is a symptom of many neurological diseases that may significantly affect the quality of daily life. Traditional methods are time-consuming and involve the manual scoring of polysomnogram (PSG) signals obtained in a laboratory environment. However, the automated monitoring of sleep sta...
Autores principales: | Yildirim, Ozal, Baloglu, Ulas Baran, Acharya, U Rajendra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406978/ https://www.ncbi.nlm.nih.gov/pubmed/30791379 http://dx.doi.org/10.3390/ijerph16040599 |
Ejemplares similares
-
Automated detection of COVID-19 cases using deep neural networks with X-ray images
por: Ozturk, Tulin, et al.
Publicado: (2020) -
SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach
por: Mousavi, Sajad, et al.
Publicado: (2019) -
An Automated Wavelet-Based Sleep Scoring Model Using EEG, EMG, and EOG Signals with More Than 8000 Subjects
por: Sharma, Manish, et al.
Publicado: (2022) -
Application of Computational Intelligence Methods for the Automated Identification of Paper-Ink Samples Based on LIBS
por: Rzecki, Krzysztof, et al.
Publicado: (2018) -
Sleep Micro–Macro-structures in Psychophysiological Insomnia. PSG Study
por: Ghermezian, Ali, et al.
Publicado: (2023)