Cargando…
An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer
Substantial alterations at the multi-omics level of pancreatic cancer (PC) impede the possibility to diagnose and treat patients in early stages. Herein, we conducted an integrative omics-based translational analysis, utilizing next-generation sequencing, transcriptome meta-analysis, and immunohisto...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407035/ https://www.ncbi.nlm.nih.gov/pubmed/30700038 http://dx.doi.org/10.3390/cancers11020155 |
_version_ | 1783401463483990016 |
---|---|
author | Long, Nguyen Phuoc Jung, Kyung Hee Anh, Nguyen Hoang Yan, Hong Hua Nghi, Tran Diem Park, Seongoh Yoon, Sang Jun Min, Jung Eun Kim, Hyung Min Lim, Joo Han Kim, Joon Mee Lim, Johan Lee, Sanghyuk Hong, Soon-Sun Kwon, Sung Won |
author_facet | Long, Nguyen Phuoc Jung, Kyung Hee Anh, Nguyen Hoang Yan, Hong Hua Nghi, Tran Diem Park, Seongoh Yoon, Sang Jun Min, Jung Eun Kim, Hyung Min Lim, Joo Han Kim, Joon Mee Lim, Johan Lee, Sanghyuk Hong, Soon-Sun Kwon, Sung Won |
author_sort | Long, Nguyen Phuoc |
collection | PubMed |
description | Substantial alterations at the multi-omics level of pancreatic cancer (PC) impede the possibility to diagnose and treat patients in early stages. Herein, we conducted an integrative omics-based translational analysis, utilizing next-generation sequencing, transcriptome meta-analysis, and immunohistochemistry, combined with statistical learning, to validate multiplex biomarker candidates for the diagnosis, prognosis, and management of PC. Experiment-based validation was conducted and supportive evidence for the essentiality of the candidates in PC were found at gene expression or protein level by practical biochemical methods. Remarkably, the random forests (RF) model exhibited an excellent diagnostic performance and LAMC2, ANXA2, ADAM9, and APLP2 greatly influenced its decisions. An explanation approach for the RF model was successfully constructed. Moreover, protein expression of LAMC2, ANXA2, ADAM9, and APLP2 was found correlated and significantly higher in PC patients in independent cohorts. Survival analysis revealed that patients with high expression of ADAM9 (Hazard ratio (HR)(OS) = 2.2, p-value < 0.001), ANXA2 (HR(OS) = 2.1, p-value < 0.001), and LAMC2 (HR(DFS) = 1.8, p-value = 0.012) exhibited poorer survival rates. In conclusion, we successfully explore hidden biological insights from large-scale omics data and suggest that LAMC2, ANXA2, ADAM9, and APLP2 are robust biomarkers for early diagnosis, prognosis, and management for PC. |
format | Online Article Text |
id | pubmed-6407035 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64070352019-03-21 An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer Long, Nguyen Phuoc Jung, Kyung Hee Anh, Nguyen Hoang Yan, Hong Hua Nghi, Tran Diem Park, Seongoh Yoon, Sang Jun Min, Jung Eun Kim, Hyung Min Lim, Joo Han Kim, Joon Mee Lim, Johan Lee, Sanghyuk Hong, Soon-Sun Kwon, Sung Won Cancers (Basel) Article Substantial alterations at the multi-omics level of pancreatic cancer (PC) impede the possibility to diagnose and treat patients in early stages. Herein, we conducted an integrative omics-based translational analysis, utilizing next-generation sequencing, transcriptome meta-analysis, and immunohistochemistry, combined with statistical learning, to validate multiplex biomarker candidates for the diagnosis, prognosis, and management of PC. Experiment-based validation was conducted and supportive evidence for the essentiality of the candidates in PC were found at gene expression or protein level by practical biochemical methods. Remarkably, the random forests (RF) model exhibited an excellent diagnostic performance and LAMC2, ANXA2, ADAM9, and APLP2 greatly influenced its decisions. An explanation approach for the RF model was successfully constructed. Moreover, protein expression of LAMC2, ANXA2, ADAM9, and APLP2 was found correlated and significantly higher in PC patients in independent cohorts. Survival analysis revealed that patients with high expression of ADAM9 (Hazard ratio (HR)(OS) = 2.2, p-value < 0.001), ANXA2 (HR(OS) = 2.1, p-value < 0.001), and LAMC2 (HR(DFS) = 1.8, p-value = 0.012) exhibited poorer survival rates. In conclusion, we successfully explore hidden biological insights from large-scale omics data and suggest that LAMC2, ANXA2, ADAM9, and APLP2 are robust biomarkers for early diagnosis, prognosis, and management for PC. MDPI 2019-01-29 /pmc/articles/PMC6407035/ /pubmed/30700038 http://dx.doi.org/10.3390/cancers11020155 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Long, Nguyen Phuoc Jung, Kyung Hee Anh, Nguyen Hoang Yan, Hong Hua Nghi, Tran Diem Park, Seongoh Yoon, Sang Jun Min, Jung Eun Kim, Hyung Min Lim, Joo Han Kim, Joon Mee Lim, Johan Lee, Sanghyuk Hong, Soon-Sun Kwon, Sung Won An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer |
title | An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer |
title_full | An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer |
title_fullStr | An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer |
title_full_unstemmed | An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer |
title_short | An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer |
title_sort | integrative data mining and omics-based translational model for the identification and validation of oncogenic biomarkers of pancreatic cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407035/ https://www.ncbi.nlm.nih.gov/pubmed/30700038 http://dx.doi.org/10.3390/cancers11020155 |
work_keys_str_mv | AT longnguyenphuoc anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT jungkyunghee anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT anhnguyenhoang anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT yanhonghua anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT nghitrandiem anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT parkseongoh anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT yoonsangjun anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT minjungeun anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT kimhyungmin anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT limjoohan anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT kimjoonmee anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT limjohan anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT leesanghyuk anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT hongsoonsun anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT kwonsungwon anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT longnguyenphuoc integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT jungkyunghee integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT anhnguyenhoang integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT yanhonghua integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT nghitrandiem integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT parkseongoh integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT yoonsangjun integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT minjungeun integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT kimhyungmin integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT limjoohan integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT kimjoonmee integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT limjohan integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT leesanghyuk integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT hongsoonsun integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer AT kwonsungwon integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer |