Cargando…

An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer

Substantial alterations at the multi-omics level of pancreatic cancer (PC) impede the possibility to diagnose and treat patients in early stages. Herein, we conducted an integrative omics-based translational analysis, utilizing next-generation sequencing, transcriptome meta-analysis, and immunohisto...

Descripción completa

Detalles Bibliográficos
Autores principales: Long, Nguyen Phuoc, Jung, Kyung Hee, Anh, Nguyen Hoang, Yan, Hong Hua, Nghi, Tran Diem, Park, Seongoh, Yoon, Sang Jun, Min, Jung Eun, Kim, Hyung Min, Lim, Joo Han, Kim, Joon Mee, Lim, Johan, Lee, Sanghyuk, Hong, Soon-Sun, Kwon, Sung Won
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407035/
https://www.ncbi.nlm.nih.gov/pubmed/30700038
http://dx.doi.org/10.3390/cancers11020155
_version_ 1783401463483990016
author Long, Nguyen Phuoc
Jung, Kyung Hee
Anh, Nguyen Hoang
Yan, Hong Hua
Nghi, Tran Diem
Park, Seongoh
Yoon, Sang Jun
Min, Jung Eun
Kim, Hyung Min
Lim, Joo Han
Kim, Joon Mee
Lim, Johan
Lee, Sanghyuk
Hong, Soon-Sun
Kwon, Sung Won
author_facet Long, Nguyen Phuoc
Jung, Kyung Hee
Anh, Nguyen Hoang
Yan, Hong Hua
Nghi, Tran Diem
Park, Seongoh
Yoon, Sang Jun
Min, Jung Eun
Kim, Hyung Min
Lim, Joo Han
Kim, Joon Mee
Lim, Johan
Lee, Sanghyuk
Hong, Soon-Sun
Kwon, Sung Won
author_sort Long, Nguyen Phuoc
collection PubMed
description Substantial alterations at the multi-omics level of pancreatic cancer (PC) impede the possibility to diagnose and treat patients in early stages. Herein, we conducted an integrative omics-based translational analysis, utilizing next-generation sequencing, transcriptome meta-analysis, and immunohistochemistry, combined with statistical learning, to validate multiplex biomarker candidates for the diagnosis, prognosis, and management of PC. Experiment-based validation was conducted and supportive evidence for the essentiality of the candidates in PC were found at gene expression or protein level by practical biochemical methods. Remarkably, the random forests (RF) model exhibited an excellent diagnostic performance and LAMC2, ANXA2, ADAM9, and APLP2 greatly influenced its decisions. An explanation approach for the RF model was successfully constructed. Moreover, protein expression of LAMC2, ANXA2, ADAM9, and APLP2 was found correlated and significantly higher in PC patients in independent cohorts. Survival analysis revealed that patients with high expression of ADAM9 (Hazard ratio (HR)(OS) = 2.2, p-value < 0.001), ANXA2 (HR(OS) = 2.1, p-value < 0.001), and LAMC2 (HR(DFS) = 1.8, p-value = 0.012) exhibited poorer survival rates. In conclusion, we successfully explore hidden biological insights from large-scale omics data and suggest that LAMC2, ANXA2, ADAM9, and APLP2 are robust biomarkers for early diagnosis, prognosis, and management for PC.
format Online
Article
Text
id pubmed-6407035
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-64070352019-03-21 An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer Long, Nguyen Phuoc Jung, Kyung Hee Anh, Nguyen Hoang Yan, Hong Hua Nghi, Tran Diem Park, Seongoh Yoon, Sang Jun Min, Jung Eun Kim, Hyung Min Lim, Joo Han Kim, Joon Mee Lim, Johan Lee, Sanghyuk Hong, Soon-Sun Kwon, Sung Won Cancers (Basel) Article Substantial alterations at the multi-omics level of pancreatic cancer (PC) impede the possibility to diagnose and treat patients in early stages. Herein, we conducted an integrative omics-based translational analysis, utilizing next-generation sequencing, transcriptome meta-analysis, and immunohistochemistry, combined with statistical learning, to validate multiplex biomarker candidates for the diagnosis, prognosis, and management of PC. Experiment-based validation was conducted and supportive evidence for the essentiality of the candidates in PC were found at gene expression or protein level by practical biochemical methods. Remarkably, the random forests (RF) model exhibited an excellent diagnostic performance and LAMC2, ANXA2, ADAM9, and APLP2 greatly influenced its decisions. An explanation approach for the RF model was successfully constructed. Moreover, protein expression of LAMC2, ANXA2, ADAM9, and APLP2 was found correlated and significantly higher in PC patients in independent cohorts. Survival analysis revealed that patients with high expression of ADAM9 (Hazard ratio (HR)(OS) = 2.2, p-value < 0.001), ANXA2 (HR(OS) = 2.1, p-value < 0.001), and LAMC2 (HR(DFS) = 1.8, p-value = 0.012) exhibited poorer survival rates. In conclusion, we successfully explore hidden biological insights from large-scale omics data and suggest that LAMC2, ANXA2, ADAM9, and APLP2 are robust biomarkers for early diagnosis, prognosis, and management for PC. MDPI 2019-01-29 /pmc/articles/PMC6407035/ /pubmed/30700038 http://dx.doi.org/10.3390/cancers11020155 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Long, Nguyen Phuoc
Jung, Kyung Hee
Anh, Nguyen Hoang
Yan, Hong Hua
Nghi, Tran Diem
Park, Seongoh
Yoon, Sang Jun
Min, Jung Eun
Kim, Hyung Min
Lim, Joo Han
Kim, Joon Mee
Lim, Johan
Lee, Sanghyuk
Hong, Soon-Sun
Kwon, Sung Won
An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer
title An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer
title_full An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer
title_fullStr An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer
title_full_unstemmed An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer
title_short An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer
title_sort integrative data mining and omics-based translational model for the identification and validation of oncogenic biomarkers of pancreatic cancer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407035/
https://www.ncbi.nlm.nih.gov/pubmed/30700038
http://dx.doi.org/10.3390/cancers11020155
work_keys_str_mv AT longnguyenphuoc anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT jungkyunghee anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT anhnguyenhoang anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT yanhonghua anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT nghitrandiem anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT parkseongoh anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT yoonsangjun anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT minjungeun anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT kimhyungmin anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT limjoohan anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT kimjoonmee anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT limjohan anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT leesanghyuk anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT hongsoonsun anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT kwonsungwon anintegrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT longnguyenphuoc integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT jungkyunghee integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT anhnguyenhoang integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT yanhonghua integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT nghitrandiem integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT parkseongoh integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT yoonsangjun integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT minjungeun integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT kimhyungmin integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT limjoohan integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT kimjoonmee integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT limjohan integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT leesanghyuk integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT hongsoonsun integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer
AT kwonsungwon integrativedataminingandomicsbasedtranslationalmodelfortheidentificationandvalidationofoncogenicbiomarkersofpancreaticcancer