Cargando…
Response Surface Analysis of Genomic Prediction Accuracy Values Using Quality Control Covariates in Soybean
An important and broadly used tool for selection purposes and to increase yield and genetic gain in plant breeding programs is genomic prediction (GP). Genomic prediction is a technique where molecular marker information and phenotypic data are used to predict the phenotype (eg, yield) of individual...
Autores principales: | Jarquín, Diego, Howard, Reka, Graef, George, Lorenz, Aaron |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407170/ https://www.ncbi.nlm.nih.gov/pubmed/30872917 http://dx.doi.org/10.1177/1176934319831307 |
Ejemplares similares
-
Genotyping by sequencing for genomic prediction in a soybean breeding population
por: Jarquín, Diego, et al.
Publicado: (2014) -
Incorporation of Soil-Derived Covariates in Progeny Testing and Line Selection to Enhance Genomic Prediction Accuracy in Soybean Breeding
por: Canella Vieira, Caio, et al.
Publicado: (2022) -
Genomic Prediction Using Canopy Coverage Image and Genotypic Information in Soybean via a Hybrid Model
por: Howard, Reka, et al.
Publicado: (2019) -
An Assessment of the Factors Influencing the Prediction Accuracy of Genomic Prediction Models Across Multiple Environments
por: Widener, Sarah, et al.
Publicado: (2021) -
Prospects of Genomic Prediction in the USDA Soybean Germplasm Collection: Historical Data Creates Robust Models for Enhancing Selection of Accessions
por: Jarquin, Diego, et al.
Publicado: (2016)