Cargando…
Human cardiac progenitor cell activation and regeneration mechanisms: exploring a novel myocardial ischemia/reperfusion in vitro model
BACKGROUND: Numerous studies from different labs around the world report human cardiac progenitor cells (hCPCs) as having a role in myocardial repair upon ischemia/reperfusion (I/R) injury, mainly through auto/paracrine signaling. Even though these cell populations are already being investigated in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407246/ https://www.ncbi.nlm.nih.gov/pubmed/30845956 http://dx.doi.org/10.1186/s13287-019-1174-4 |
_version_ | 1783401507533619200 |
---|---|
author | Sebastião, Maria J. Serra, Margarida Pereira, Rute Palacios, Itziar Gomes-Alves, Patrícia Alves, Paula M. |
author_facet | Sebastião, Maria J. Serra, Margarida Pereira, Rute Palacios, Itziar Gomes-Alves, Patrícia Alves, Paula M. |
author_sort | Sebastião, Maria J. |
collection | PubMed |
description | BACKGROUND: Numerous studies from different labs around the world report human cardiac progenitor cells (hCPCs) as having a role in myocardial repair upon ischemia/reperfusion (I/R) injury, mainly through auto/paracrine signaling. Even though these cell populations are already being investigated in cell transplantation-based clinical trials, the mechanisms underlying their response are still poorly understood. METHODS: To further investigate hCPC regenerative process, we established the first in vitro human heterotypic model of myocardial I/R injury using hCPCs and human-induced pluripotent cell-derived cardiomyocytes (hiPSC-CMs). The co-culture model was established using transwell inserts and evaluated in both ischemia and reperfusion phases regarding secretion of key cytokines, hiPSC-CM viability, and hCPC proliferation. hCPC proteome in response to I/R was further characterized using advanced liquid chromatography mass spectrometry tools. RESULTS: This model recapitulates hallmarks of I/R, namely hiPSC-CM death upon insult, protective effect of hCPCs on hiPSC-CM viability (37.6% higher vs hiPSC-CM mono-culture), and hCPC proliferation (approximately threefold increase vs hCPCs mono-culture), emphasizing the importance of paracrine communication between these two populations. In particular, in co-culture supernatant upon injury, we report higher angiogenic functionality as well as a significant increase in the CXCL6 secretion rate, suggesting an important role of this chemokine in myocardial regeneration. hCPC whole proteome analysis allowed us to propose new pathways in the hCPC-mediated regenerative process, including cell cycle regulation, proliferation through EGF signaling, and reactive oxygen species detoxification. CONCLUSION: This work contributes with new insights into hCPC biology in response to I/R, and the model established constitutes an important tool to study the molecular mechanisms involved in the myocardial regenerative process. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13287-019-1174-4) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6407246 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-64072462019-03-21 Human cardiac progenitor cell activation and regeneration mechanisms: exploring a novel myocardial ischemia/reperfusion in vitro model Sebastião, Maria J. Serra, Margarida Pereira, Rute Palacios, Itziar Gomes-Alves, Patrícia Alves, Paula M. Stem Cell Res Ther Research BACKGROUND: Numerous studies from different labs around the world report human cardiac progenitor cells (hCPCs) as having a role in myocardial repair upon ischemia/reperfusion (I/R) injury, mainly through auto/paracrine signaling. Even though these cell populations are already being investigated in cell transplantation-based clinical trials, the mechanisms underlying their response are still poorly understood. METHODS: To further investigate hCPC regenerative process, we established the first in vitro human heterotypic model of myocardial I/R injury using hCPCs and human-induced pluripotent cell-derived cardiomyocytes (hiPSC-CMs). The co-culture model was established using transwell inserts and evaluated in both ischemia and reperfusion phases regarding secretion of key cytokines, hiPSC-CM viability, and hCPC proliferation. hCPC proteome in response to I/R was further characterized using advanced liquid chromatography mass spectrometry tools. RESULTS: This model recapitulates hallmarks of I/R, namely hiPSC-CM death upon insult, protective effect of hCPCs on hiPSC-CM viability (37.6% higher vs hiPSC-CM mono-culture), and hCPC proliferation (approximately threefold increase vs hCPCs mono-culture), emphasizing the importance of paracrine communication between these two populations. In particular, in co-culture supernatant upon injury, we report higher angiogenic functionality as well as a significant increase in the CXCL6 secretion rate, suggesting an important role of this chemokine in myocardial regeneration. hCPC whole proteome analysis allowed us to propose new pathways in the hCPC-mediated regenerative process, including cell cycle regulation, proliferation through EGF signaling, and reactive oxygen species detoxification. CONCLUSION: This work contributes with new insights into hCPC biology in response to I/R, and the model established constitutes an important tool to study the molecular mechanisms involved in the myocardial regenerative process. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13287-019-1174-4) contains supplementary material, which is available to authorized users. BioMed Central 2019-03-07 /pmc/articles/PMC6407246/ /pubmed/30845956 http://dx.doi.org/10.1186/s13287-019-1174-4 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Sebastião, Maria J. Serra, Margarida Pereira, Rute Palacios, Itziar Gomes-Alves, Patrícia Alves, Paula M. Human cardiac progenitor cell activation and regeneration mechanisms: exploring a novel myocardial ischemia/reperfusion in vitro model |
title | Human cardiac progenitor cell activation and regeneration mechanisms: exploring a novel myocardial ischemia/reperfusion in vitro model |
title_full | Human cardiac progenitor cell activation and regeneration mechanisms: exploring a novel myocardial ischemia/reperfusion in vitro model |
title_fullStr | Human cardiac progenitor cell activation and regeneration mechanisms: exploring a novel myocardial ischemia/reperfusion in vitro model |
title_full_unstemmed | Human cardiac progenitor cell activation and regeneration mechanisms: exploring a novel myocardial ischemia/reperfusion in vitro model |
title_short | Human cardiac progenitor cell activation and regeneration mechanisms: exploring a novel myocardial ischemia/reperfusion in vitro model |
title_sort | human cardiac progenitor cell activation and regeneration mechanisms: exploring a novel myocardial ischemia/reperfusion in vitro model |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407246/ https://www.ncbi.nlm.nih.gov/pubmed/30845956 http://dx.doi.org/10.1186/s13287-019-1174-4 |
work_keys_str_mv | AT sebastiaomariaj humancardiacprogenitorcellactivationandregenerationmechanismsexploringanovelmyocardialischemiareperfusioninvitromodel AT serramargarida humancardiacprogenitorcellactivationandregenerationmechanismsexploringanovelmyocardialischemiareperfusioninvitromodel AT pereirarute humancardiacprogenitorcellactivationandregenerationmechanismsexploringanovelmyocardialischemiareperfusioninvitromodel AT palaciositziar humancardiacprogenitorcellactivationandregenerationmechanismsexploringanovelmyocardialischemiareperfusioninvitromodel AT gomesalvespatricia humancardiacprogenitorcellactivationandregenerationmechanismsexploringanovelmyocardialischemiareperfusioninvitromodel AT alvespaulam humancardiacprogenitorcellactivationandregenerationmechanismsexploringanovelmyocardialischemiareperfusioninvitromodel |