Cargando…
The impact of exercise on mitochondrial dynamics and the role of Drp1 in exercise performance and training adaptations in skeletal muscle
OBJECTIVE: Mitochondria are organelles primarily responsible for energy production, and recent evidence indicates that alterations in size, shape, location, and quantity occur in response to fluctuations in energy supply and demand. We tested the impact of acute and chronic exercise on mitochondrial...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407367/ https://www.ncbi.nlm.nih.gov/pubmed/30591411 http://dx.doi.org/10.1016/j.molmet.2018.11.012 |
_version_ | 1783401533361094656 |
---|---|
author | Moore, Timothy M. Zhou, Zhenqi Cohn, Whitaker Norheim, Frode Lin, Amanda J. Kalajian, Nareg Strumwasser, Alexander R. Cory, Kevin Whitney, Kate Ho, Theodore Ho, Timothy Lee, Joseph L. Rucker, Daniel H. Shirihai, Orian van der Bliek, Alexander M. Whitelegge, Julian P. Seldin, Marcus M. Lusis, Aldons J. Lee, Sindre Drevon, Christian A. Mahata, Sushil K. Turcotte, Lorraine P. Hevener, Andrea L. |
author_facet | Moore, Timothy M. Zhou, Zhenqi Cohn, Whitaker Norheim, Frode Lin, Amanda J. Kalajian, Nareg Strumwasser, Alexander R. Cory, Kevin Whitney, Kate Ho, Theodore Ho, Timothy Lee, Joseph L. Rucker, Daniel H. Shirihai, Orian van der Bliek, Alexander M. Whitelegge, Julian P. Seldin, Marcus M. Lusis, Aldons J. Lee, Sindre Drevon, Christian A. Mahata, Sushil K. Turcotte, Lorraine P. Hevener, Andrea L. |
author_sort | Moore, Timothy M. |
collection | PubMed |
description | OBJECTIVE: Mitochondria are organelles primarily responsible for energy production, and recent evidence indicates that alterations in size, shape, location, and quantity occur in response to fluctuations in energy supply and demand. We tested the impact of acute and chronic exercise on mitochondrial dynamics signaling and determined the impact of the mitochondrial fission regulator Dynamin related protein (Drp)1 on exercise performance and muscle adaptations to training. METHODS: Wildtype and muscle-specific Drp1 heterozygote (mDrp1(+/−)) mice, as well as dysglycemic (DG) and healthy normoglycemic men (control) performed acute and chronic exercise. The Hybrid Mouse Diversity Panel, including 100 murine strains of recombinant inbred mice, was used to identify muscle Dnm1L (encodes Drp1)-gene relationships. RESULTS: Endurance exercise impacted all aspects of the mitochondrial life cycle, i.e. fission-fusion, biogenesis, and mitophagy. Dnm1L gene expression and Drp1(Ser616) phosphorylation were markedly increased by acute exercise and declined to baseline during post-exercise recovery. Dnm1L expression was strongly associated with transcripts known to regulate mitochondrial metabolism and adaptations to exercise. Exercise increased the expression of DNM1L in skeletal muscle of healthy control and DG subjects, despite a 15% ↓(P = 0.01) in muscle DNM1L expression in DG at baseline. To interrogate the role of Dnm1L further, we exercise trained male mDrp1(+/−) mice and found that Drp1 deficiency reduced muscle endurance and running performance, and altered muscle adaptations in response to exercise training. CONCLUSION: Our findings highlight the importance of mitochondrial dynamics, specifically Drp1 signaling, in the regulation of exercise performance and adaptations to endurance exercise training. |
format | Online Article Text |
id | pubmed-6407367 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-64073672019-03-21 The impact of exercise on mitochondrial dynamics and the role of Drp1 in exercise performance and training adaptations in skeletal muscle Moore, Timothy M. Zhou, Zhenqi Cohn, Whitaker Norheim, Frode Lin, Amanda J. Kalajian, Nareg Strumwasser, Alexander R. Cory, Kevin Whitney, Kate Ho, Theodore Ho, Timothy Lee, Joseph L. Rucker, Daniel H. Shirihai, Orian van der Bliek, Alexander M. Whitelegge, Julian P. Seldin, Marcus M. Lusis, Aldons J. Lee, Sindre Drevon, Christian A. Mahata, Sushil K. Turcotte, Lorraine P. Hevener, Andrea L. Mol Metab Original Article OBJECTIVE: Mitochondria are organelles primarily responsible for energy production, and recent evidence indicates that alterations in size, shape, location, and quantity occur in response to fluctuations in energy supply and demand. We tested the impact of acute and chronic exercise on mitochondrial dynamics signaling and determined the impact of the mitochondrial fission regulator Dynamin related protein (Drp)1 on exercise performance and muscle adaptations to training. METHODS: Wildtype and muscle-specific Drp1 heterozygote (mDrp1(+/−)) mice, as well as dysglycemic (DG) and healthy normoglycemic men (control) performed acute and chronic exercise. The Hybrid Mouse Diversity Panel, including 100 murine strains of recombinant inbred mice, was used to identify muscle Dnm1L (encodes Drp1)-gene relationships. RESULTS: Endurance exercise impacted all aspects of the mitochondrial life cycle, i.e. fission-fusion, biogenesis, and mitophagy. Dnm1L gene expression and Drp1(Ser616) phosphorylation were markedly increased by acute exercise and declined to baseline during post-exercise recovery. Dnm1L expression was strongly associated with transcripts known to regulate mitochondrial metabolism and adaptations to exercise. Exercise increased the expression of DNM1L in skeletal muscle of healthy control and DG subjects, despite a 15% ↓(P = 0.01) in muscle DNM1L expression in DG at baseline. To interrogate the role of Dnm1L further, we exercise trained male mDrp1(+/−) mice and found that Drp1 deficiency reduced muscle endurance and running performance, and altered muscle adaptations in response to exercise training. CONCLUSION: Our findings highlight the importance of mitochondrial dynamics, specifically Drp1 signaling, in the regulation of exercise performance and adaptations to endurance exercise training. Elsevier 2018-12-04 /pmc/articles/PMC6407367/ /pubmed/30591411 http://dx.doi.org/10.1016/j.molmet.2018.11.012 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Moore, Timothy M. Zhou, Zhenqi Cohn, Whitaker Norheim, Frode Lin, Amanda J. Kalajian, Nareg Strumwasser, Alexander R. Cory, Kevin Whitney, Kate Ho, Theodore Ho, Timothy Lee, Joseph L. Rucker, Daniel H. Shirihai, Orian van der Bliek, Alexander M. Whitelegge, Julian P. Seldin, Marcus M. Lusis, Aldons J. Lee, Sindre Drevon, Christian A. Mahata, Sushil K. Turcotte, Lorraine P. Hevener, Andrea L. The impact of exercise on mitochondrial dynamics and the role of Drp1 in exercise performance and training adaptations in skeletal muscle |
title | The impact of exercise on mitochondrial dynamics and the role of Drp1 in exercise performance and training adaptations in skeletal muscle |
title_full | The impact of exercise on mitochondrial dynamics and the role of Drp1 in exercise performance and training adaptations in skeletal muscle |
title_fullStr | The impact of exercise on mitochondrial dynamics and the role of Drp1 in exercise performance and training adaptations in skeletal muscle |
title_full_unstemmed | The impact of exercise on mitochondrial dynamics and the role of Drp1 in exercise performance and training adaptations in skeletal muscle |
title_short | The impact of exercise on mitochondrial dynamics and the role of Drp1 in exercise performance and training adaptations in skeletal muscle |
title_sort | impact of exercise on mitochondrial dynamics and the role of drp1 in exercise performance and training adaptations in skeletal muscle |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407367/ https://www.ncbi.nlm.nih.gov/pubmed/30591411 http://dx.doi.org/10.1016/j.molmet.2018.11.012 |
work_keys_str_mv | AT mooretimothym theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT zhouzhenqi theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT cohnwhitaker theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT norheimfrode theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT linamandaj theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT kalajiannareg theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT strumwasseralexanderr theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT corykevin theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT whitneykate theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT hotheodore theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT hotimothy theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT leejosephl theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT ruckerdanielh theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT shirihaiorian theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT vanderbliekalexanderm theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT whiteleggejulianp theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT seldinmarcusm theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT lusisaldonsj theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT leesindre theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT drevonchristiana theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT mahatasushilk theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT turcottelorrainep theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT hevenerandreal theimpactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT mooretimothym impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT zhouzhenqi impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT cohnwhitaker impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT norheimfrode impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT linamandaj impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT kalajiannareg impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT strumwasseralexanderr impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT corykevin impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT whitneykate impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT hotheodore impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT hotimothy impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT leejosephl impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT ruckerdanielh impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT shirihaiorian impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT vanderbliekalexanderm impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT whiteleggejulianp impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT seldinmarcusm impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT lusisaldonsj impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT leesindre impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT drevonchristiana impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT mahatasushilk impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT turcottelorrainep impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle AT hevenerandreal impactofexerciseonmitochondrialdynamicsandtheroleofdrp1inexerciseperformanceandtrainingadaptationsinskeletalmuscle |