Cargando…
Prediction of cancer using customised fuzzy rough machine learning approaches
This Letter proposes a customised approach for attribute selection applied to the fuzzy rough quick reduct algorithm. The unbalanced data is balanced using synthetic minority oversampling technique. The huge dimensionality of the cancer data is reduced using a correlation-based filter. The dimension...
Autores principales: | Arunkumar, Chinnaswamy, Ramakrishnan, Srinivasan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Institution of Engineering and Technology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407447/ https://www.ncbi.nlm.nih.gov/pubmed/30881694 http://dx.doi.org/10.1049/htl.2018.5055 |
Ejemplares similares
-
fuzzy-rough-learn 0.1: A Python Library for Machine Learning with Fuzzy Rough Sets
por: Lenz, Oliver Urs, et al.
Publicado: (2020) -
Evolutionary sequential genetic search technique-based cancer classification using fuzzy rough nearest neighbour classifier
por: Meenachi, Loganathan, et al.
Publicado: (2018) -
COVID-19 impact: Customised economic stimulus package recommender system using machine learning techniques
por: Kannan, Rathimala, et al.
Publicado: (2021) -
Dealing with imbalanced and weakly labelled data in machine learning using fuzzy and rough set methods
por: Vluymans, Sarah
Publicado: (2018) -
Customisation
por: Raich, U
Publicado: (1990)