Cargando…
Spectral shift functions and Dirichlet-to-Neumann maps
The spectral shift function of a pair of self-adjoint operators is expressed via an abstract operator-valued Titchmarsh–Weyl m-function. This general result is applied to different self-adjoint realizations of second-order elliptic partial differential operators on smooth domains with compact bounda...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407858/ https://www.ncbi.nlm.nih.gov/pubmed/30930488 http://dx.doi.org/10.1007/s00208-017-1593-4 |
_version_ | 1783401651293388800 |
---|---|
author | Behrndt, Jussi Gesztesy, Fritz Nakamura, Shu |
author_facet | Behrndt, Jussi Gesztesy, Fritz Nakamura, Shu |
author_sort | Behrndt, Jussi |
collection | PubMed |
description | The spectral shift function of a pair of self-adjoint operators is expressed via an abstract operator-valued Titchmarsh–Weyl m-function. This general result is applied to different self-adjoint realizations of second-order elliptic partial differential operators on smooth domains with compact boundaries and Schrödinger operators with compactly supported potentials. In these applications the spectral shift function is determined in an explicit form with the help of (energy parameter dependent) Dirichlet-to-Neumann maps. |
format | Online Article Text |
id | pubmed-6407858 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-64078582019-03-27 Spectral shift functions and Dirichlet-to-Neumann maps Behrndt, Jussi Gesztesy, Fritz Nakamura, Shu Math Ann Article The spectral shift function of a pair of self-adjoint operators is expressed via an abstract operator-valued Titchmarsh–Weyl m-function. This general result is applied to different self-adjoint realizations of second-order elliptic partial differential operators on smooth domains with compact boundaries and Schrödinger operators with compactly supported potentials. In these applications the spectral shift function is determined in an explicit form with the help of (energy parameter dependent) Dirichlet-to-Neumann maps. Springer Berlin Heidelberg 2017-09-23 2018 /pmc/articles/PMC6407858/ /pubmed/30930488 http://dx.doi.org/10.1007/s00208-017-1593-4 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Behrndt, Jussi Gesztesy, Fritz Nakamura, Shu Spectral shift functions and Dirichlet-to-Neumann maps |
title | Spectral shift functions and Dirichlet-to-Neumann maps |
title_full | Spectral shift functions and Dirichlet-to-Neumann maps |
title_fullStr | Spectral shift functions and Dirichlet-to-Neumann maps |
title_full_unstemmed | Spectral shift functions and Dirichlet-to-Neumann maps |
title_short | Spectral shift functions and Dirichlet-to-Neumann maps |
title_sort | spectral shift functions and dirichlet-to-neumann maps |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407858/ https://www.ncbi.nlm.nih.gov/pubmed/30930488 http://dx.doi.org/10.1007/s00208-017-1593-4 |
work_keys_str_mv | AT behrndtjussi spectralshiftfunctionsanddirichlettoneumannmaps AT gesztesyfritz spectralshiftfunctionsanddirichlettoneumannmaps AT nakamurashu spectralshiftfunctionsanddirichlettoneumannmaps |