Cargando…

Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells

The power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) are already higher than that of other thin film technologies, but laboratory cell-fabrication methods are not scalable. Here, we report an additive strategy to enhance the efficiency and stability of PSCs made by scalable blad...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Wu-Qiang, Yang, Zhibin, Rudd, Peter N., Shao, Yuchuan, Dai, Xuezeng, Wei, Haotong, Zhao, Jingjing, Fang, Yanjun, Wang, Qi, Liu, Ye, Deng, Yehao, Xiao, Xun, Feng, Yuanxiang, Huang, Jinsong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408151/
https://www.ncbi.nlm.nih.gov/pubmed/30873433
http://dx.doi.org/10.1126/sciadv.aav8925
_version_ 1783401718906617856
author Wu, Wu-Qiang
Yang, Zhibin
Rudd, Peter N.
Shao, Yuchuan
Dai, Xuezeng
Wei, Haotong
Zhao, Jingjing
Fang, Yanjun
Wang, Qi
Liu, Ye
Deng, Yehao
Xiao, Xun
Feng, Yuanxiang
Huang, Jinsong
author_facet Wu, Wu-Qiang
Yang, Zhibin
Rudd, Peter N.
Shao, Yuchuan
Dai, Xuezeng
Wei, Haotong
Zhao, Jingjing
Fang, Yanjun
Wang, Qi
Liu, Ye
Deng, Yehao
Xiao, Xun
Feng, Yuanxiang
Huang, Jinsong
author_sort Wu, Wu-Qiang
collection PubMed
description The power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) are already higher than that of other thin film technologies, but laboratory cell-fabrication methods are not scalable. Here, we report an additive strategy to enhance the efficiency and stability of PSCs made by scalable blading. Blade-coated PSCs incorporating bilateral alkylamine (BAA) additives achieve PCEs of 21.5 (aperture, 0.08 cm(2)) and 20.0% (aperture, 1.1 cm(2)), with a record-small open-circuit voltage deficit of 0.35 V under AM1.5G illumination. The stabilized PCE reaches 22.6% under 0.3 sun. Anchoring monolayer bilateral amino groups passivates the defects at the perovskite surface and enhances perovskite stability by exposing the linking hydrophobic alkyl chain. Grain boundaries are reinforced by BAA and are more resistant to mechanical bending and electron beam damage. BAA improves the device shelf lifetime to >1000 hours and operation stability to >500 hours under light, with 90% of the initial efficiency retained.
format Online
Article
Text
id pubmed-6408151
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-64081512019-03-14 Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells Wu, Wu-Qiang Yang, Zhibin Rudd, Peter N. Shao, Yuchuan Dai, Xuezeng Wei, Haotong Zhao, Jingjing Fang, Yanjun Wang, Qi Liu, Ye Deng, Yehao Xiao, Xun Feng, Yuanxiang Huang, Jinsong Sci Adv Research Articles The power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) are already higher than that of other thin film technologies, but laboratory cell-fabrication methods are not scalable. Here, we report an additive strategy to enhance the efficiency and stability of PSCs made by scalable blading. Blade-coated PSCs incorporating bilateral alkylamine (BAA) additives achieve PCEs of 21.5 (aperture, 0.08 cm(2)) and 20.0% (aperture, 1.1 cm(2)), with a record-small open-circuit voltage deficit of 0.35 V under AM1.5G illumination. The stabilized PCE reaches 22.6% under 0.3 sun. Anchoring monolayer bilateral amino groups passivates the defects at the perovskite surface and enhances perovskite stability by exposing the linking hydrophobic alkyl chain. Grain boundaries are reinforced by BAA and are more resistant to mechanical bending and electron beam damage. BAA improves the device shelf lifetime to >1000 hours and operation stability to >500 hours under light, with 90% of the initial efficiency retained. American Association for the Advancement of Science 2019-03-08 /pmc/articles/PMC6408151/ /pubmed/30873433 http://dx.doi.org/10.1126/sciadv.aav8925 Text en Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Wu, Wu-Qiang
Yang, Zhibin
Rudd, Peter N.
Shao, Yuchuan
Dai, Xuezeng
Wei, Haotong
Zhao, Jingjing
Fang, Yanjun
Wang, Qi
Liu, Ye
Deng, Yehao
Xiao, Xun
Feng, Yuanxiang
Huang, Jinsong
Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells
title Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells
title_full Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells
title_fullStr Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells
title_full_unstemmed Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells
title_short Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells
title_sort bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408151/
https://www.ncbi.nlm.nih.gov/pubmed/30873433
http://dx.doi.org/10.1126/sciadv.aav8925
work_keys_str_mv AT wuwuqiang bilateralalkylamineforsuppressingchargerecombinationandimprovingstabilityinbladecoatedperovskitesolarcells
AT yangzhibin bilateralalkylamineforsuppressingchargerecombinationandimprovingstabilityinbladecoatedperovskitesolarcells
AT ruddpetern bilateralalkylamineforsuppressingchargerecombinationandimprovingstabilityinbladecoatedperovskitesolarcells
AT shaoyuchuan bilateralalkylamineforsuppressingchargerecombinationandimprovingstabilityinbladecoatedperovskitesolarcells
AT daixuezeng bilateralalkylamineforsuppressingchargerecombinationandimprovingstabilityinbladecoatedperovskitesolarcells
AT weihaotong bilateralalkylamineforsuppressingchargerecombinationandimprovingstabilityinbladecoatedperovskitesolarcells
AT zhaojingjing bilateralalkylamineforsuppressingchargerecombinationandimprovingstabilityinbladecoatedperovskitesolarcells
AT fangyanjun bilateralalkylamineforsuppressingchargerecombinationandimprovingstabilityinbladecoatedperovskitesolarcells
AT wangqi bilateralalkylamineforsuppressingchargerecombinationandimprovingstabilityinbladecoatedperovskitesolarcells
AT liuye bilateralalkylamineforsuppressingchargerecombinationandimprovingstabilityinbladecoatedperovskitesolarcells
AT dengyehao bilateralalkylamineforsuppressingchargerecombinationandimprovingstabilityinbladecoatedperovskitesolarcells
AT xiaoxun bilateralalkylamineforsuppressingchargerecombinationandimprovingstabilityinbladecoatedperovskitesolarcells
AT fengyuanxiang bilateralalkylamineforsuppressingchargerecombinationandimprovingstabilityinbladecoatedperovskitesolarcells
AT huangjinsong bilateralalkylamineforsuppressingchargerecombinationandimprovingstabilityinbladecoatedperovskitesolarcells