Cargando…
Tensor clustering with algebraic constraints gives interpretable groups of crosstalk mechanisms in breast cancer
We introduce a tensor-based clustering method to extract sparse, low-dimensional structure from high-dimensional, multi-indexed datasets. This framework is designed to enable detection of clusters of data in the presence of structural requirements which we encode as algebraic constraints in a linear...
Autores principales: | Seigal, Anna, Beguerisse-Díaz, Mariano, Schoeberl, Birgit, Niepel, Mario, Harrington, Heather A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408352/ https://www.ncbi.nlm.nih.gov/pubmed/30958184 http://dx.doi.org/10.1098/rsif.2018.0661 |
Ejemplares similares
-
Linear models of activation cascades: analytical solutions and coarse-graining of delayed signal transduction
por: Beguerisse-Díaz, Mariano, et al.
Publicado: (2016) -
Occupational mobility and automation: a data-driven network model
por: del Rio-Chanona, R. Maria, et al.
Publicado: (2021) -
Numerical algebraic geometry for model selection and its application to the life sciences
por: Gross, Elizabeth, et al.
Publicado: (2016) -
Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype
por: Boareto, Marcelo, et al.
Publicado: (2016) -
Diamond thin films: giving biomedical applications a new shine
por: Nistor, P. A., et al.
Publicado: (2017)