Cargando…
Enhancement in acoustic focusing of micro and nanoparticles by thinning a microfluidic device
The manipulation of micro/nanoparticles has become increasingly important in biological and industrial fields. As a non-contact method for particle manipulation, acoustic focusing has been applied in sorting, enrichment and analysis of particles with microfluidic devices. Although the frequency and...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408367/ https://www.ncbi.nlm.nih.gov/pubmed/30891287 http://dx.doi.org/10.1098/rsos.181776 |
_version_ | 1783401733368578048 |
---|---|
author | Ota, Nobutoshi Yalikun, Yaxiaer Suzuki, Tomoyuki Lee, Sang Wook Hosokawa, Yoichiroh Goda, Keisuke Tanaka, Yo |
author_facet | Ota, Nobutoshi Yalikun, Yaxiaer Suzuki, Tomoyuki Lee, Sang Wook Hosokawa, Yoichiroh Goda, Keisuke Tanaka, Yo |
author_sort | Ota, Nobutoshi |
collection | PubMed |
description | The manipulation of micro/nanoparticles has become increasingly important in biological and industrial fields. As a non-contact method for particle manipulation, acoustic focusing has been applied in sorting, enrichment and analysis of particles with microfluidic devices. Although the frequency and amplitude of acoustic waves and the dimensions of microchannels have been recognized as important parameters for acoustic focusing, the thickness of microfluidic devices has not been considered so far. Here, we report that thin glass microfluidic devices enhance acoustic focusing of micro/nanoparticles. It was found that the thickness of a microfluidic device strongly influences its ability to focus particles via acoustic radiation, because the energy propagation of acoustic waves is affected by the total mass of the device. Acoustic focusing of submicrometre polystyrene beads and Escherichia coli as well as enrichment of polystyrene beads were achieved in glass microfluidic devices as thin as 0.4 mm. Modifying the thickness of a microfluidic device can thus serve as a critical parameter for acoustic focusing when conventional parameters to achieve this effect are kept unchanged. Thus, our findings enable new approaches to the design of novel microfluidic devices. |
format | Online Article Text |
id | pubmed-6408367 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-64083672019-03-19 Enhancement in acoustic focusing of micro and nanoparticles by thinning a microfluidic device Ota, Nobutoshi Yalikun, Yaxiaer Suzuki, Tomoyuki Lee, Sang Wook Hosokawa, Yoichiroh Goda, Keisuke Tanaka, Yo R Soc Open Sci Engineering The manipulation of micro/nanoparticles has become increasingly important in biological and industrial fields. As a non-contact method for particle manipulation, acoustic focusing has been applied in sorting, enrichment and analysis of particles with microfluidic devices. Although the frequency and amplitude of acoustic waves and the dimensions of microchannels have been recognized as important parameters for acoustic focusing, the thickness of microfluidic devices has not been considered so far. Here, we report that thin glass microfluidic devices enhance acoustic focusing of micro/nanoparticles. It was found that the thickness of a microfluidic device strongly influences its ability to focus particles via acoustic radiation, because the energy propagation of acoustic waves is affected by the total mass of the device. Acoustic focusing of submicrometre polystyrene beads and Escherichia coli as well as enrichment of polystyrene beads were achieved in glass microfluidic devices as thin as 0.4 mm. Modifying the thickness of a microfluidic device can thus serve as a critical parameter for acoustic focusing when conventional parameters to achieve this effect are kept unchanged. Thus, our findings enable new approaches to the design of novel microfluidic devices. The Royal Society 2019-02-20 /pmc/articles/PMC6408367/ /pubmed/30891287 http://dx.doi.org/10.1098/rsos.181776 Text en © 2019 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Engineering Ota, Nobutoshi Yalikun, Yaxiaer Suzuki, Tomoyuki Lee, Sang Wook Hosokawa, Yoichiroh Goda, Keisuke Tanaka, Yo Enhancement in acoustic focusing of micro and nanoparticles by thinning a microfluidic device |
title | Enhancement in acoustic focusing of micro and nanoparticles by thinning a microfluidic device |
title_full | Enhancement in acoustic focusing of micro and nanoparticles by thinning a microfluidic device |
title_fullStr | Enhancement in acoustic focusing of micro and nanoparticles by thinning a microfluidic device |
title_full_unstemmed | Enhancement in acoustic focusing of micro and nanoparticles by thinning a microfluidic device |
title_short | Enhancement in acoustic focusing of micro and nanoparticles by thinning a microfluidic device |
title_sort | enhancement in acoustic focusing of micro and nanoparticles by thinning a microfluidic device |
topic | Engineering |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408367/ https://www.ncbi.nlm.nih.gov/pubmed/30891287 http://dx.doi.org/10.1098/rsos.181776 |
work_keys_str_mv | AT otanobutoshi enhancementinacousticfocusingofmicroandnanoparticlesbythinningamicrofluidicdevice AT yalikunyaxiaer enhancementinacousticfocusingofmicroandnanoparticlesbythinningamicrofluidicdevice AT suzukitomoyuki enhancementinacousticfocusingofmicroandnanoparticlesbythinningamicrofluidicdevice AT leesangwook enhancementinacousticfocusingofmicroandnanoparticlesbythinningamicrofluidicdevice AT hosokawayoichiroh enhancementinacousticfocusingofmicroandnanoparticlesbythinningamicrofluidicdevice AT godakeisuke enhancementinacousticfocusingofmicroandnanoparticlesbythinningamicrofluidicdevice AT tanakayo enhancementinacousticfocusingofmicroandnanoparticlesbythinningamicrofluidicdevice |