Cargando…
miRNA analysis with Prost! reveals evolutionary conservation of organ-enriched expression and post-transcriptional modifications in three-spined stickleback and zebrafish
MicroRNAs (miRNAs) can have organ-specific expression and functions; they can originate from dedicated miRNA genes, from non-canonical miRNA genes, or from mirror-miRNA genes and can also experience post-transcriptional variation. It remains unclear, however, which mechanisms of miRNA production or...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408482/ https://www.ncbi.nlm.nih.gov/pubmed/30850632 http://dx.doi.org/10.1038/s41598-019-40361-8 |
_version_ | 1783401768326004736 |
---|---|
author | Desvignes, Thomas Batzel, Peter Sydes, Jason Eames, B. Frank Postlethwait, John H. |
author_facet | Desvignes, Thomas Batzel, Peter Sydes, Jason Eames, B. Frank Postlethwait, John H. |
author_sort | Desvignes, Thomas |
collection | PubMed |
description | MicroRNAs (miRNAs) can have organ-specific expression and functions; they can originate from dedicated miRNA genes, from non-canonical miRNA genes, or from mirror-miRNA genes and can also experience post-transcriptional variation. It remains unclear, however, which mechanisms of miRNA production or modification are organ-specific and the extent of their evolutionary conservation. To address these issues, we developed the software Prost! (PRocessing Of Short Transcripts), which, among other features, helps quantify mature miRNAs, accounts for post-transcriptional processing, such as nucleotide editing, and identifies mirror-miRNAs. Here, we applied Prost! to annotate and analyze miRNAs in three-spined stickleback (Gasterosteus aculeatus), a model fish for evolutionary biology reported to have a miRNome larger than most teleost fish. Zebrafish (Danio rerio), a distantly related teleost with a well-known miRNome, served as comparator. Our results provided evidence for the existence of 286 miRNA genes and 382 unique mature miRNAs (excluding mir430 gene duplicates and the vaultRNA-derived mir733), which doesn’t represent a miRNAome larger than other teleost miRNomes. In addition, small RNA sequencing data from brain, heart, testis, and ovary in both stickleback and zebrafish identified suites of mature miRNAs that display organ-specific enrichment, many of which are evolutionarily-conserved in the brain and heart in both species. These data also supported the hypothesis that evolutionarily-conserved, organ-specific mechanisms may regulate post-transcriptional variations in miRNA sequence. In both stickleback and zebrafish, miR2188-5p was edited frequently with similar nucleotide changes in the seed sequence with organ specific editing rates, highest in the brain. In summary, Prost! is a new tool to identify and understand small RNAs, to help clarify a species’ miRNA biology as shown here for an important model for the evolution of developmental mechanisms, and to provide insight into organ-enriched expression and the evolutionary conservation of miRNA post-transcriptional modifications. |
format | Online Article Text |
id | pubmed-6408482 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-64084822019-03-12 miRNA analysis with Prost! reveals evolutionary conservation of organ-enriched expression and post-transcriptional modifications in three-spined stickleback and zebrafish Desvignes, Thomas Batzel, Peter Sydes, Jason Eames, B. Frank Postlethwait, John H. Sci Rep Article MicroRNAs (miRNAs) can have organ-specific expression and functions; they can originate from dedicated miRNA genes, from non-canonical miRNA genes, or from mirror-miRNA genes and can also experience post-transcriptional variation. It remains unclear, however, which mechanisms of miRNA production or modification are organ-specific and the extent of their evolutionary conservation. To address these issues, we developed the software Prost! (PRocessing Of Short Transcripts), which, among other features, helps quantify mature miRNAs, accounts for post-transcriptional processing, such as nucleotide editing, and identifies mirror-miRNAs. Here, we applied Prost! to annotate and analyze miRNAs in three-spined stickleback (Gasterosteus aculeatus), a model fish for evolutionary biology reported to have a miRNome larger than most teleost fish. Zebrafish (Danio rerio), a distantly related teleost with a well-known miRNome, served as comparator. Our results provided evidence for the existence of 286 miRNA genes and 382 unique mature miRNAs (excluding mir430 gene duplicates and the vaultRNA-derived mir733), which doesn’t represent a miRNAome larger than other teleost miRNomes. In addition, small RNA sequencing data from brain, heart, testis, and ovary in both stickleback and zebrafish identified suites of mature miRNAs that display organ-specific enrichment, many of which are evolutionarily-conserved in the brain and heart in both species. These data also supported the hypothesis that evolutionarily-conserved, organ-specific mechanisms may regulate post-transcriptional variations in miRNA sequence. In both stickleback and zebrafish, miR2188-5p was edited frequently with similar nucleotide changes in the seed sequence with organ specific editing rates, highest in the brain. In summary, Prost! is a new tool to identify and understand small RNAs, to help clarify a species’ miRNA biology as shown here for an important model for the evolution of developmental mechanisms, and to provide insight into organ-enriched expression and the evolutionary conservation of miRNA post-transcriptional modifications. Nature Publishing Group UK 2019-03-08 /pmc/articles/PMC6408482/ /pubmed/30850632 http://dx.doi.org/10.1038/s41598-019-40361-8 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Desvignes, Thomas Batzel, Peter Sydes, Jason Eames, B. Frank Postlethwait, John H. miRNA analysis with Prost! reveals evolutionary conservation of organ-enriched expression and post-transcriptional modifications in three-spined stickleback and zebrafish |
title | miRNA analysis with Prost! reveals evolutionary conservation of organ-enriched expression and post-transcriptional modifications in three-spined stickleback and zebrafish |
title_full | miRNA analysis with Prost! reveals evolutionary conservation of organ-enriched expression and post-transcriptional modifications in three-spined stickleback and zebrafish |
title_fullStr | miRNA analysis with Prost! reveals evolutionary conservation of organ-enriched expression and post-transcriptional modifications in three-spined stickleback and zebrafish |
title_full_unstemmed | miRNA analysis with Prost! reveals evolutionary conservation of organ-enriched expression and post-transcriptional modifications in three-spined stickleback and zebrafish |
title_short | miRNA analysis with Prost! reveals evolutionary conservation of organ-enriched expression and post-transcriptional modifications in three-spined stickleback and zebrafish |
title_sort | mirna analysis with prost! reveals evolutionary conservation of organ-enriched expression and post-transcriptional modifications in three-spined stickleback and zebrafish |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408482/ https://www.ncbi.nlm.nih.gov/pubmed/30850632 http://dx.doi.org/10.1038/s41598-019-40361-8 |
work_keys_str_mv | AT desvignesthomas mirnaanalysiswithprostrevealsevolutionaryconservationoforganenrichedexpressionandposttranscriptionalmodificationsinthreespinedsticklebackandzebrafish AT batzelpeter mirnaanalysiswithprostrevealsevolutionaryconservationoforganenrichedexpressionandposttranscriptionalmodificationsinthreespinedsticklebackandzebrafish AT sydesjason mirnaanalysiswithprostrevealsevolutionaryconservationoforganenrichedexpressionandposttranscriptionalmodificationsinthreespinedsticklebackandzebrafish AT eamesbfrank mirnaanalysiswithprostrevealsevolutionaryconservationoforganenrichedexpressionandposttranscriptionalmodificationsinthreespinedsticklebackandzebrafish AT postlethwaitjohnh mirnaanalysiswithprostrevealsevolutionaryconservationoforganenrichedexpressionandposttranscriptionalmodificationsinthreespinedsticklebackandzebrafish |