Cargando…
Circuit-Based Quantum Random Access Memory for Classical Data
A prerequisite for many quantum information processing tasks to truly surpass classical approaches is an efficient procedure to encode classical data in quantum superposition states. In this work, we present a circuit-based flip-flop quantum random access memory to construct a quantum database of cl...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408577/ https://www.ncbi.nlm.nih.gov/pubmed/30850658 http://dx.doi.org/10.1038/s41598-019-40439-3 |
Sumario: | A prerequisite for many quantum information processing tasks to truly surpass classical approaches is an efficient procedure to encode classical data in quantum superposition states. In this work, we present a circuit-based flip-flop quantum random access memory to construct a quantum database of classical information in a systematic and flexible way. For registering or updating classical data consisting of M entries, each represented by n bits, the method requires O(n) qubits and O(Mn) steps. With post-selection at an additional cost, our method can also store continuous data as probability amplitudes. As an example, we present a procedure to convert classical training data for a quantum supervised learning algorithm to a quantum state. Further improvements can be achieved by reducing the number of state preparation queries with the introduction of quantum forking. |
---|