Cargando…
Spinon confinement and a sharp longitudinal mode in Yb(2)Pt(2)Pb in magnetic fields
The fundamental excitations in an antiferromagnetic chain of spins-1/2 are spinons, de-confined fractional quasiparticles that when combined in pairs, form a triplet excitation continuum. In an Ising-like spin chain the continuum is gapped and the ground state is Néel ordered. Here, we report high r...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408591/ https://www.ncbi.nlm.nih.gov/pubmed/30850591 http://dx.doi.org/10.1038/s41467-019-08715-y |
Sumario: | The fundamental excitations in an antiferromagnetic chain of spins-1/2 are spinons, de-confined fractional quasiparticles that when combined in pairs, form a triplet excitation continuum. In an Ising-like spin chain the continuum is gapped and the ground state is Néel ordered. Here, we report high resolution neutron scattering experiments, which reveal how a magnetic field closes this gap and drives the spin chains in Yb(2)Pt(2)Pb to a critical, disordered Luttinger-liquid state. In Yb(2)Pt(2)Pb the effective spins-1/2 describe the dynamics of large, Ising-like Yb magnetic moments, ensuring that the measured excitations are exclusively longitudinal, which we find to be well described by time-dependent density matrix renormalization group calculations. The inter-chain coupling leads to the confinement of spinons, a condensed matter analog of quark confinement in quantum chromodynamics. Insensitive to transverse fluctuations, our measurements show how a gapless, dispersive longitudinal mode arises from confinement and evolves with magnetic order. |
---|