Cargando…

Vitellogenins in the spider Parasteatoda tepidariorum – expression profile and putative hormonal regulation of vitellogenesis

BACKGROUND: Knowledge about vitellogenesis in spiders is rudimentary. Therefore, the aim of study was to check the vitellogenin (Vg) presence in various tissues of the female spider Parasteatoda tepidariorum, determine when and where vitellogenesis starts and takes place, and the putative role of se...

Descripción completa

Detalles Bibliográficos
Autores principales: Bednarek, Agata W., Sawadro, Marta K., Nicewicz, Łukasz, Babczyńska, Agnieszka I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408786/
https://www.ncbi.nlm.nih.gov/pubmed/30849941
http://dx.doi.org/10.1186/s12861-019-0184-x
Descripción
Sumario:BACKGROUND: Knowledge about vitellogenesis in spiders is rudimentary. Therefore, the aim of study was to check the vitellogenin (Vg) presence in various tissues of the female spider Parasteatoda tepidariorum, determine when and where vitellogenesis starts and takes place, and the putative role of selected hormones in the vitellogenesis. RESULTS: Here we show two genes encoding Vg (PtVg4 and PtVg6) in the genome of the spider P. tepidariorum. One gene PtVg4 and three subunits of Vg (250 kDa, 47 kDa and 30 kDa) are expressed in the midgut glands, ovaries and hemolymph. Heterosynthesis of the Vg in the midgut glands and autosynthesis in the ovaries were observed. Vitellogenesis begins in the last nymphal stage in the midgut glands (heterosynthesis). However, after sexual maturity is reached, Vg is also synthesized in the ovaries (autosynthesis). Changes in the PtVg4 expression level and in the Vg concentration after treatment with 20-hydroxyecdysone, a juvenile hormone analog (fenoxycarb) and an antijuvenoid compound (precocene I) were observed. Therefore, we propose a hypothetical model for the hormonal regulation of vitellogenesis in P. tepidariorum. CONCLUSIONS: Our results are the first comprehensive study on spider vitellogenesis. In our opinion, this work will open discussion on the evolutionary context of possible similarities in the hormonal control of vitellogenesis between P. tepidariorum and other arthropods as well as their consequences.