Cargando…

Agrobacterium rhizogenes—mediated transformation of Pisum sativum L. roots as a tool for studying the mycorrhizal and root nodule symbioses

In this study, we demonstrated the successful transformation of two pea (Pisum sativum L.) cultivars using Agrobacterium rhizogenes, whereby transgenic roots in the resulting composite plants showed expression of the gene encoding the green fluorescent protein. Subsequent to infection with A. rhizog...

Descripción completa

Detalles Bibliográficos
Autores principales: Leppyanen, Irina V., Kirienko, Anna N., Dolgikh, Elena A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408910/
https://www.ncbi.nlm.nih.gov/pubmed/30863680
http://dx.doi.org/10.7717/peerj.6552
Descripción
Sumario:In this study, we demonstrated the successful transformation of two pea (Pisum sativum L.) cultivars using Agrobacterium rhizogenes, whereby transgenic roots in the resulting composite plants showed expression of the gene encoding the green fluorescent protein. Subsequent to infection with A. rhizogenes, approximately 70%–80% of pea seedlings developed transgenic hairy roots. We found out that the transgenic roots can be efficiently nodulated by Rhizobium leguminosarum bv. viciae and infected by the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis. The morphology of nodules in the transgenic roots was found to be identical to that of nodules observed in wild-type roots, and we also observed the effective induction of markers typical of the symbiotic association with AM fungi. The convenient protocol for highly efficient A. rhizogenes-mediated transformation developed in this study would be a rapid and effective tool for investigating those genes involved in the development of the two types of symbioses found in pea plants.