Cargando…
Root Branching and Nutrient Efficiency: Status and Way Forward in Root and Tuber Crops
Plants are immobile organisms that require roots to efficiently and cost-effectively exploit their habitat for water and nutrients. Plant root systems are dynamic structures capable of altering root branching, root angle, and root growth rates determining overall architecture. This plasticity involv...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409306/ https://www.ncbi.nlm.nih.gov/pubmed/30886622 http://dx.doi.org/10.3389/fpls.2019.00237 |
_version_ | 1783401935284469760 |
---|---|
author | Duque, Luis O. Villordon, Arthur |
author_facet | Duque, Luis O. Villordon, Arthur |
author_sort | Duque, Luis O. |
collection | PubMed |
description | Plants are immobile organisms that require roots to efficiently and cost-effectively exploit their habitat for water and nutrients. Plant root systems are dynamic structures capable of altering root branching, root angle, and root growth rates determining overall architecture. This plasticity involves belowground plant-root mediated synergies coupled through a continuum of environmental interactions and endogenous developmental processes facilitating plants to adapt to favorable or adverse soil conditions. Plant root branching is paramount to ensure adequate access to soil water and nutrients. Although substantial resources have been devoted toward this goal, significant knowledge gaps exist. In well-studied systems such as rice and maize, it has become evident that root branching plays a significant role in the acquisition of nutrients and other soil-based resources. In these crop species, specific root branching traits that confer enhanced nutrient acquisition are well-characterized and are already being incorporated into breeding populations. In contrast, the understanding of root branching in root and tuber crop productivity has lagged behind. In this review article, we highlight what is known about root branching in root and tuber crops (RTCs) and mark new research directions, such as the use novel phenotyping methods, examining the changes in root morphology and anatomy under nutrient stress, and germplasm screening with enhanced root architecture for more efficient nutrient capture. These directions will permit a better understanding of the interaction between root branching and nutrient acquisition in these globally important crop species. |
format | Online Article Text |
id | pubmed-6409306 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64093062019-03-18 Root Branching and Nutrient Efficiency: Status and Way Forward in Root and Tuber Crops Duque, Luis O. Villordon, Arthur Front Plant Sci Plant Science Plants are immobile organisms that require roots to efficiently and cost-effectively exploit their habitat for water and nutrients. Plant root systems are dynamic structures capable of altering root branching, root angle, and root growth rates determining overall architecture. This plasticity involves belowground plant-root mediated synergies coupled through a continuum of environmental interactions and endogenous developmental processes facilitating plants to adapt to favorable or adverse soil conditions. Plant root branching is paramount to ensure adequate access to soil water and nutrients. Although substantial resources have been devoted toward this goal, significant knowledge gaps exist. In well-studied systems such as rice and maize, it has become evident that root branching plays a significant role in the acquisition of nutrients and other soil-based resources. In these crop species, specific root branching traits that confer enhanced nutrient acquisition are well-characterized and are already being incorporated into breeding populations. In contrast, the understanding of root branching in root and tuber crop productivity has lagged behind. In this review article, we highlight what is known about root branching in root and tuber crops (RTCs) and mark new research directions, such as the use novel phenotyping methods, examining the changes in root morphology and anatomy under nutrient stress, and germplasm screening with enhanced root architecture for more efficient nutrient capture. These directions will permit a better understanding of the interaction between root branching and nutrient acquisition in these globally important crop species. Frontiers Media S.A. 2019-03-04 /pmc/articles/PMC6409306/ /pubmed/30886622 http://dx.doi.org/10.3389/fpls.2019.00237 Text en Copyright © 2019 Duque and Villordon. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Duque, Luis O. Villordon, Arthur Root Branching and Nutrient Efficiency: Status and Way Forward in Root and Tuber Crops |
title | Root Branching and Nutrient Efficiency: Status and Way Forward in Root and Tuber Crops |
title_full | Root Branching and Nutrient Efficiency: Status and Way Forward in Root and Tuber Crops |
title_fullStr | Root Branching and Nutrient Efficiency: Status and Way Forward in Root and Tuber Crops |
title_full_unstemmed | Root Branching and Nutrient Efficiency: Status and Way Forward in Root and Tuber Crops |
title_short | Root Branching and Nutrient Efficiency: Status and Way Forward in Root and Tuber Crops |
title_sort | root branching and nutrient efficiency: status and way forward in root and tuber crops |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409306/ https://www.ncbi.nlm.nih.gov/pubmed/30886622 http://dx.doi.org/10.3389/fpls.2019.00237 |
work_keys_str_mv | AT duqueluiso rootbranchingandnutrientefficiencystatusandwayforwardinrootandtubercrops AT villordonarthur rootbranchingandnutrientefficiencystatusandwayforwardinrootandtubercrops |