Cargando…

Nanocarbon-Edge-Anchored High-Density Pt Atoms for 3-nitrostyrene Hydrogenation: Strong Metal-Carbon Interaction

Strong metal-support interaction (SMSI) has been widely used to improve catalytic performance and to identify reaction mechanisms. We report that single Pt atoms anchored onto hollow nanocarbon (h-NC) edges possess strong metal-carbon interaction, which significantly modifies the catalytic behavior...

Descripción completa

Detalles Bibliográficos
Autores principales: Lou, Yang, Wu, Honglu, Liu, Jingyue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409412/
https://www.ncbi.nlm.nih.gov/pubmed/30852451
http://dx.doi.org/10.1016/j.isci.2019.02.016
Descripción
Sumario:Strong metal-support interaction (SMSI) has been widely used to improve catalytic performance and to identify reaction mechanisms. We report that single Pt atoms anchored onto hollow nanocarbon (h-NC) edges possess strong metal-carbon interaction, which significantly modifies the catalytic behavior of the anchored Pt atoms for selective hydrogenation reactions. The strong Pt-C bonding not only stabilizes single Pt atoms but also modifies their electronic structure, tunes their adsorption properties, and enhances activation of reactants. The fabricated Pt(1)/h-NC single-atom catalysts (SACs) demonstrated excellent activity for hydrogenation of 3-nitrostyrene to 3-vinylaniline with a turnover number >31,000/h, 20 times higher than that of the best catalyst for such selective hydrogenation reactions reported in the literature. The strategy to strongly anchor Pt atoms by edge carbon atoms of h-NCs is general and can be extended to construct strongly anchored metal atoms, via SMSI, onto surfaces of various types of support materials to develop robust SACs.