Cargando…
Analytics for Investigation of Disease Outbreaks: Web-Based Analytics Facilitating Situational Awareness in Unfolding Disease Outbreaks
BACKGROUND: Information from historical infectious disease outbreaks provides real-world data about outbreaks and their impacts on affected populations. These data can be used to develop a picture of an unfolding outbreak in its early stages, when incoming information is sparse and isolated, to iden...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409513/ https://www.ncbi.nlm.nih.gov/pubmed/30801254 http://dx.doi.org/10.2196/12032 |
_version_ | 1783401987560177664 |
---|---|
author | Velappan, Nileena Daughton, Ashlynn Rae Fairchild, Geoffrey Rosenberger, William Earl Generous, Nicholas Chitanvis, Maneesha Elizabeth Altherr, Forest Michael Castro, Lauren A Priedhorsky, Reid Abeyta, Esteban Luis Naranjo, Leslie A Hollander, Attelia Dawn Vuyisich, Grace Lillo, Antonietta Maria Cloyd, Emily Kathryn Vaidya, Ashvini Rajendra Deshpande, Alina |
author_facet | Velappan, Nileena Daughton, Ashlynn Rae Fairchild, Geoffrey Rosenberger, William Earl Generous, Nicholas Chitanvis, Maneesha Elizabeth Altherr, Forest Michael Castro, Lauren A Priedhorsky, Reid Abeyta, Esteban Luis Naranjo, Leslie A Hollander, Attelia Dawn Vuyisich, Grace Lillo, Antonietta Maria Cloyd, Emily Kathryn Vaidya, Ashvini Rajendra Deshpande, Alina |
author_sort | Velappan, Nileena |
collection | PubMed |
description | BACKGROUND: Information from historical infectious disease outbreaks provides real-world data about outbreaks and their impacts on affected populations. These data can be used to develop a picture of an unfolding outbreak in its early stages, when incoming information is sparse and isolated, to identify effective control measures and guide their implementation. OBJECTIVE: This study aimed to develop a publicly accessible Web-based visual analytic called Analytics for the Investigation of Disease Outbreaks (AIDO) that uses historical disease outbreak information for decision support and situational awareness of an unfolding outbreak. METHODS: We developed an algorithm to allow the matching of unfolding outbreak data to a representative library of historical outbreaks. This process provides epidemiological clues that facilitate a user’s understanding of an unfolding outbreak and facilitates informed decisions about mitigation actions. Disease-specific properties to build a complete picture of the unfolding event were identified through a data-driven approach. A method of analogs approach was used to develop a short-term forecasting feature in the analytic. The 4 major steps involved in developing this tool were (1) collection of historic outbreak data and preparation of the representative library, (2) development of AIDO algorithms, (3) development of user interface and associated visuals, and (4) verification and validation. RESULTS: The tool currently includes representative historical outbreaks for 39 infectious diseases with over 600 diverse outbreaks. We identified 27 different properties categorized into 3 broad domains (population, location, and disease) that were used to evaluate outbreaks across all diseases for their effect on case count and duration of an outbreak. Statistical analyses revealed disease-specific properties from this set that were included in the disease-specific similarity algorithm. Although there were some similarities across diseases, we found that statistically important properties tend to vary, even between similar diseases. This may be because of our emphasis on including diverse representative outbreak presentations in our libraries. AIDO algorithm evaluations (similarity algorithm and short-term forecasting) were conducted using 4 case studies and we have shown details for the Q fever outbreak in Bilbao, Spain (2014), using data from the early stages of the outbreak. Using data from only the initial 2 weeks, AIDO identified historical outbreaks that were very similar in terms of their epidemiological picture (case count, duration, source of exposure, and urban setting). The short-term forecasting algorithm accurately predicted case count and duration for the unfolding outbreak. CONCLUSIONS: AIDO is a decision support tool that facilitates increased situational awareness during an unfolding outbreak and enables informed decisions on mitigation strategies. AIDO analytics are available to epidemiologists across the globe with access to internet, at no cost. In this study, we presented a new approach to applying historical outbreak data to provide actionable information during the early stages of an unfolding infectious disease outbreak. |
format | Online Article Text |
id | pubmed-6409513 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-64095132019-04-10 Analytics for Investigation of Disease Outbreaks: Web-Based Analytics Facilitating Situational Awareness in Unfolding Disease Outbreaks Velappan, Nileena Daughton, Ashlynn Rae Fairchild, Geoffrey Rosenberger, William Earl Generous, Nicholas Chitanvis, Maneesha Elizabeth Altherr, Forest Michael Castro, Lauren A Priedhorsky, Reid Abeyta, Esteban Luis Naranjo, Leslie A Hollander, Attelia Dawn Vuyisich, Grace Lillo, Antonietta Maria Cloyd, Emily Kathryn Vaidya, Ashvini Rajendra Deshpande, Alina JMIR Public Health Surveill Original Paper BACKGROUND: Information from historical infectious disease outbreaks provides real-world data about outbreaks and their impacts on affected populations. These data can be used to develop a picture of an unfolding outbreak in its early stages, when incoming information is sparse and isolated, to identify effective control measures and guide their implementation. OBJECTIVE: This study aimed to develop a publicly accessible Web-based visual analytic called Analytics for the Investigation of Disease Outbreaks (AIDO) that uses historical disease outbreak information for decision support and situational awareness of an unfolding outbreak. METHODS: We developed an algorithm to allow the matching of unfolding outbreak data to a representative library of historical outbreaks. This process provides epidemiological clues that facilitate a user’s understanding of an unfolding outbreak and facilitates informed decisions about mitigation actions. Disease-specific properties to build a complete picture of the unfolding event were identified through a data-driven approach. A method of analogs approach was used to develop a short-term forecasting feature in the analytic. The 4 major steps involved in developing this tool were (1) collection of historic outbreak data and preparation of the representative library, (2) development of AIDO algorithms, (3) development of user interface and associated visuals, and (4) verification and validation. RESULTS: The tool currently includes representative historical outbreaks for 39 infectious diseases with over 600 diverse outbreaks. We identified 27 different properties categorized into 3 broad domains (population, location, and disease) that were used to evaluate outbreaks across all diseases for their effect on case count and duration of an outbreak. Statistical analyses revealed disease-specific properties from this set that were included in the disease-specific similarity algorithm. Although there were some similarities across diseases, we found that statistically important properties tend to vary, even between similar diseases. This may be because of our emphasis on including diverse representative outbreak presentations in our libraries. AIDO algorithm evaluations (similarity algorithm and short-term forecasting) were conducted using 4 case studies and we have shown details for the Q fever outbreak in Bilbao, Spain (2014), using data from the early stages of the outbreak. Using data from only the initial 2 weeks, AIDO identified historical outbreaks that were very similar in terms of their epidemiological picture (case count, duration, source of exposure, and urban setting). The short-term forecasting algorithm accurately predicted case count and duration for the unfolding outbreak. CONCLUSIONS: AIDO is a decision support tool that facilitates increased situational awareness during an unfolding outbreak and enables informed decisions on mitigation strategies. AIDO analytics are available to epidemiologists across the globe with access to internet, at no cost. In this study, we presented a new approach to applying historical outbreak data to provide actionable information during the early stages of an unfolding infectious disease outbreak. JMIR Publications 2019-02-25 /pmc/articles/PMC6409513/ /pubmed/30801254 http://dx.doi.org/10.2196/12032 Text en ©Nileena Velappan, Ashlynn Rae Daughton, Geoffrey Fairchild, William Earl Rosenberger, Nicholas Generous, Maneesha Elizabeth Chitanvis, Forest Michael Altherr, Lauren A Castro, Reid Priedhorsky, Esteban Luis Abeyta, Leslie A Naranjo, Attelia Dawn Hollander, Grace Vuyisich, Antonietta Maria Lillo, Emily Kathryn Cloyd, Ashvini Rajendra Vaidya, Alina Deshpande. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 25.02.2019. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Public Health and Surveillance, is properly cited. The complete bibliographic information, a link to the original publication on http://publichealth.jmir.org, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Velappan, Nileena Daughton, Ashlynn Rae Fairchild, Geoffrey Rosenberger, William Earl Generous, Nicholas Chitanvis, Maneesha Elizabeth Altherr, Forest Michael Castro, Lauren A Priedhorsky, Reid Abeyta, Esteban Luis Naranjo, Leslie A Hollander, Attelia Dawn Vuyisich, Grace Lillo, Antonietta Maria Cloyd, Emily Kathryn Vaidya, Ashvini Rajendra Deshpande, Alina Analytics for Investigation of Disease Outbreaks: Web-Based Analytics Facilitating Situational Awareness in Unfolding Disease Outbreaks |
title | Analytics for Investigation of Disease Outbreaks: Web-Based Analytics Facilitating Situational Awareness in Unfolding Disease Outbreaks |
title_full | Analytics for Investigation of Disease Outbreaks: Web-Based Analytics Facilitating Situational Awareness in Unfolding Disease Outbreaks |
title_fullStr | Analytics for Investigation of Disease Outbreaks: Web-Based Analytics Facilitating Situational Awareness in Unfolding Disease Outbreaks |
title_full_unstemmed | Analytics for Investigation of Disease Outbreaks: Web-Based Analytics Facilitating Situational Awareness in Unfolding Disease Outbreaks |
title_short | Analytics for Investigation of Disease Outbreaks: Web-Based Analytics Facilitating Situational Awareness in Unfolding Disease Outbreaks |
title_sort | analytics for investigation of disease outbreaks: web-based analytics facilitating situational awareness in unfolding disease outbreaks |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409513/ https://www.ncbi.nlm.nih.gov/pubmed/30801254 http://dx.doi.org/10.2196/12032 |
work_keys_str_mv | AT velappannileena analyticsforinvestigationofdiseaseoutbreakswebbasedanalyticsfacilitatingsituationalawarenessinunfoldingdiseaseoutbreaks AT daughtonashlynnrae analyticsforinvestigationofdiseaseoutbreakswebbasedanalyticsfacilitatingsituationalawarenessinunfoldingdiseaseoutbreaks AT fairchildgeoffrey analyticsforinvestigationofdiseaseoutbreakswebbasedanalyticsfacilitatingsituationalawarenessinunfoldingdiseaseoutbreaks AT rosenbergerwilliamearl analyticsforinvestigationofdiseaseoutbreakswebbasedanalyticsfacilitatingsituationalawarenessinunfoldingdiseaseoutbreaks AT generousnicholas analyticsforinvestigationofdiseaseoutbreakswebbasedanalyticsfacilitatingsituationalawarenessinunfoldingdiseaseoutbreaks AT chitanvismaneeshaelizabeth analyticsforinvestigationofdiseaseoutbreakswebbasedanalyticsfacilitatingsituationalawarenessinunfoldingdiseaseoutbreaks AT altherrforestmichael analyticsforinvestigationofdiseaseoutbreakswebbasedanalyticsfacilitatingsituationalawarenessinunfoldingdiseaseoutbreaks AT castrolaurena analyticsforinvestigationofdiseaseoutbreakswebbasedanalyticsfacilitatingsituationalawarenessinunfoldingdiseaseoutbreaks AT priedhorskyreid analyticsforinvestigationofdiseaseoutbreakswebbasedanalyticsfacilitatingsituationalawarenessinunfoldingdiseaseoutbreaks AT abeytaestebanluis analyticsforinvestigationofdiseaseoutbreakswebbasedanalyticsfacilitatingsituationalawarenessinunfoldingdiseaseoutbreaks AT naranjolesliea analyticsforinvestigationofdiseaseoutbreakswebbasedanalyticsfacilitatingsituationalawarenessinunfoldingdiseaseoutbreaks AT hollanderatteliadawn analyticsforinvestigationofdiseaseoutbreakswebbasedanalyticsfacilitatingsituationalawarenessinunfoldingdiseaseoutbreaks AT vuyisichgrace analyticsforinvestigationofdiseaseoutbreakswebbasedanalyticsfacilitatingsituationalawarenessinunfoldingdiseaseoutbreaks AT lilloantoniettamaria analyticsforinvestigationofdiseaseoutbreakswebbasedanalyticsfacilitatingsituationalawarenessinunfoldingdiseaseoutbreaks AT cloydemilykathryn analyticsforinvestigationofdiseaseoutbreakswebbasedanalyticsfacilitatingsituationalawarenessinunfoldingdiseaseoutbreaks AT vaidyaashvinirajendra analyticsforinvestigationofdiseaseoutbreakswebbasedanalyticsfacilitatingsituationalawarenessinunfoldingdiseaseoutbreaks AT deshpandealina analyticsforinvestigationofdiseaseoutbreakswebbasedanalyticsfacilitatingsituationalawarenessinunfoldingdiseaseoutbreaks |